Skip to main content
Log in

Lie Symmetry Analysis of the Nonlinear Schrödinger Equation with Time Dependent Variable Coefficients

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we study the generalized nonlinear Schrödinger equation having time dependent variable coefficients by using Lie group method. We find the Lie point symmetries admitted by the Schrödinger equation for arbitrary variable coefficients and from the obtained symmetries, we constructed the similarity reductions. As the further symmetry analysis of the reduced ordinary differential equations was not possible due to lack of symmetries, we, therefore, solve one of the reduced nonlinear ordinary differential equation for completeness by using power series method and presented the exact series solution. The convergence of the series solutions is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravi, L., Saha Ray, S., Sahoo, S.: New exact solutions of coupled Boussinesq-Burgers equations by exp-function method. J. Ocean Eng. Sci. 2(1), 34–46 (2017)

    Article  Google Scholar 

  2. Wazwaz, A.M.: The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation. Appl. Math. Comput. 199(1), 133–138 (2008)

  3. Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1) dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745–757 (2005)

    Article  MathSciNet  Google Scholar 

  4. Quan, X., Cheng, X.: Exact Solutions of (2 + 1) dimensional Boiti-Leon-Pempinelle equation with \((G^{^{\prime }}/G)\)-expansion method. Commun. Theor. Phys. 54(1), 35–37 (2010)

    Article  Google Scholar 

  5. Shi, Y., Dai, Z., Li, D.: The correct traveling wave solutions for the high-order dispersive nonlinear Schr\(\ddot{o}\)dinger equation. Appl. Math. Comput. 216(5), 1583–1591 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Zahran, E., Khater, M.: Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Appl. Math. Modell. 40, 1769–1775 (2016)

    Article  MathSciNet  Google Scholar 

  7. Lie, S.: Vorlesungenuber Differentialgleichungen mit Bekannten Infinitesimalen Transformationen. Teubner, Leipzig (1912)

    MATH  Google Scholar 

  8. Bluman, G., Cheviakov, A., Anco, S.: Applications of symmetry methods to partial differential equations. Appl. Math. Sci. 168, (2010)

  9. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  Google Scholar 

  10. Satapathy, P., Raja Sekhar, T.: Nonlocal symmetries classifications and exact solution of Chaplygin gas equations. J. Math. Phys. 59, 081512 (2018)

    Article  MathSciNet  Google Scholar 

  11. Sil, S., Raja Sekhar, T.: Nonlocally related systems, nonlocal symmetry reductions and exact solutions for one-dimensional macroscopic production model. Eur. Phys. J. Plus 135, 514 (2020)

    Article  Google Scholar 

  12. Sil, S., Raja Sekhar, T., Zeidan, D.: Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. Chaos Solitons Fractals 139, 110010 (2020)

    Article  MathSciNet  Google Scholar 

  13. Bansal, A., Biswas, A., Zhou, Q., Babatin, M.: Lie symmetry analysis for cubic-quartic nonlinear Schr\(\ddot{o}\)dinger’s equation. Optik Int. J. Light Electron Opt. 169, 12–15 (2018)

    Article  Google Scholar 

  14. Devi, P., Singh, K.: Classical Lie symmetries and similarity reductions of the (2+1)-dimensional dispersive long wave system. Asian Eur. J. Math. (2020) (Prepress)

  15. Kumar, M., Kumar, R., Kumar, A.: On similarity solutions of Zabolotskaya-Khokhlov equation. Comput. Math. Appl. 68, 454–463 (2014)

    Article  MathSciNet  Google Scholar 

  16. Rizvi, S., Afzal, I., Ali, K., Younis, M.: Stationary solutions for nonlinear Schr\(\ddot{o}\)dinger’s equations by Lie group analysis. Acta Phys. Polonica A 136(1), 187–189 (2019)

    Article  Google Scholar 

  17. Sekhar, T.R., Satapathy, P.: Group classification for isothermal drift flux model of two phase flows. Comput. Math. Appl. 72, 1436–1443 (2016)

    Article  MathSciNet  Google Scholar 

  18. Sahoo, S.M., Raja Sekhar, T., Raja Sekhar, G.P.: Optimal classification, exact solutions, and wave interactions of Euler system with large friction. Math. Methods Appl. Sci. pp. 1–14 (2020)

  19. Satapathy, P., Raja Sekhar, T.: Optimal system, invariant solutions and evolution of weak discontinuity for isentropic drift flux model. Appl. Math. Comput. 334, 107–116 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, S., Kumar, D.: Solitary wave solutions of (3+1)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach. Comput. Math. Appl. 77(8), 2096–2113 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kumar, S., Kumar, A.: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation. Nonlinear Dyn. 98, 1891–1903 (2019)

    Article  Google Scholar 

  22. Kumar, S., Kumar, A., Kharbanda, H.: Lie symmetry analysis and generalized invariant solutions of (2+1)-dimensional dispersive long wave (DLW) equations. Physica Scripta (2020)

  23. Kumar, D., Kumar, S.: Solitary wave solutions of pZK equation using Lie point symmetries. Eur. Phys. J. Plus 135, 162 (2020)

    Article  Google Scholar 

  24. Kumar, S., Rani, S.: Lie symmetry reductions and dynamics of soliton solutions of (2+1)-dimensional Pavlov equation. Pramana J. Phys. 94, 116 (2020)

    Article  Google Scholar 

  25. Kumar, S., Niwas, M., Wazwaz, A.M.: Lie symmetry analysis, exact analytical solutions and dynamics of solitons for (2+1)-dimensional NNV equations. Physica Scripta (2020)

  26. Triki, H., Biswas, A.: Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schr\(\ddot{o}\)dinger’s model. Optik Int. J. Light Electron Opt. 173, 235–241 (2018)

    Article  Google Scholar 

  27. Zhou, Q., Ekici, M., Sonmezoglu, A.: Exact chirped singular soliton solutions of Triki-Biswas equation. Optik Int. J. Light Electron Opt. 181, 338–342 (2019)

    Article  Google Scholar 

  28. Yildirim, Y.: Sub pico-second pulses in mono-mode optical fibers with Triki-Biswas model using trial equation architecture. Optik Int. J. Light Electron Opt. 183, 463–466 (2019)

    Article  Google Scholar 

  29. Aliyu, A., Alshomrani, A.S., Inc, M., Baleanu, D.: Optical solitons for Triki-Biswas equation by two analytic approaches. AIMS Math. 5(2), 1001–1010 (2020)

    Article  MathSciNet  Google Scholar 

  30. Johnpillai, A., Khalique, C., Biswas, A.: Exact solutions of the mKdV equation with time dependent coefficients. Math. Commun. 16, 509–518 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Liu, H., Li, J., Liu, L.: Painlev\(\acute{e}\) analysis, Lie symmetries, and exact solutions for the time dependent coefficients Gardner equations. Nonlinear Dyn. 59, 497–502 (2010)

    Article  Google Scholar 

  32. Liu, H., Geng, Y.: Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid. J. Differ. Equ. 254, 2289–2303 (2013)

    Article  MathSciNet  Google Scholar 

  33. Liu, H., Li, J., Zhang, Q.: Lie symmetry analysis and exact explicit solutions for general Burgers’ equation. J. Comput. Appl. Math. 228, 1–9 (2009)

    Article  MathSciNet  Google Scholar 

  34. Rudin, W.: Principles of Mathematical Analysis. China Machine Press, Beijing (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Ethics declarations

Conflict of interest

Authors declare that he/she has no conflict of interest.

Ethical approval

This article does not contain any with human participants or animal performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Singh, K. Lie Symmetry Analysis of the Nonlinear Schrödinger Equation with Time Dependent Variable Coefficients. Int. J. Appl. Comput. Math 7, 23 (2021). https://doi.org/10.1007/s40819-021-00953-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-00953-3

Keywords

Mathematics Subject Classification

Navigation