Skip to main content
Log in

Sensitivity Analysis for Verification of an Anaerobic Digestion Model

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this article, the first-order sensitivity coefficients for a system of stiff nonlinear differential equations from the anaerobic digestion model are calculated. In this approach, the auxiliary equations used to calculate the sensitivity coefficients are solved separately from the model equations, using the same time steps and numerical approximations used in the calculation of the model solution by the Rosenbrock method of order four. The results show the importance of each reaction for each species involved in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ziemiński, K., Frac, M.: Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr. J. Biotechnol. 11, 4127–4139 (2012)

    Google Scholar 

  2. Holm-Nielsen, J., Seadi, T.A., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 478–5484 (2009)

    Article  Google Scholar 

  3. Bjornsson, L.: Intensification of the biogas process by improved process monitoring and biomass retention. Ph.D. thesis, Department of Biotechnology, Lund University, Sweden (2000)

  4. Prokopová, Z., Prokop, R.: Modelling and simulation of dry anaerobic fermentation. In: European Conference on Modelling and Simulation, pp. 200–205 (2010)

  5. Ralph, M., Dong, G.J.: Environmental Microbiology, 2nd edn. Wiley, New York (2010)

    Google Scholar 

  6. Turányi, T.: Applications of sensitivity analysis to combustion chemistry. Reliab. Eng. Syst. Saf. 57, 41–48 (1997)

    Article  Google Scholar 

  7. Cao, L., Wang, C., Mao, M., Grosshans, H., Cao, N.: Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis. Atmos. Chem. Phys. 16, 14853–14873 (2016)

    Article  Google Scholar 

  8. Dodge, M., Hecht, T.: Rate constant measurements needed to improve a general kinetic mechanism for photochemical smog. Int. J. Chem. Kinet. 7, 155–163 (1975)

    Google Scholar 

  9. Valko, P., Vadja, S.: An extended ODE solver for sensitivity calculations. J. Comput. Chem. 8(84), 255–271 (1984)

    Article  Google Scholar 

  10. Dunker, A.M.: The decoupled direct method for calculating sensitivity coefficients in chemical kinetics. J. Chem. Phys. 81(5), 2385–2393 (1984)

    Article  Google Scholar 

  11. Shen, J.: A direct method of calculating sensitivity coefficients of chemical kinetics. J. Chem. Phys. 111, 7209 (1999)

    Article  Google Scholar 

  12. Kramer, M.A., Calo, J.M.: An improved computational method for sensitivity analysis: Green’s function method with ‘AIM’. Appl. Math. Model. 5, 432–441 (1981)

    Article  Google Scholar 

  13. Dougherty, E.P., Rabitz, H.: Computational kinetics and sensitivity analysis of hydrogen–oxygen combustion. J. Phys. Chem. 72, 6571–6586 (1980)

    Article  Google Scholar 

  14. Turányi, T., Bérces, T.: Kinetics of reactions occurring in the unpolluted troposphere II. Sensitivity analysis. React. Kinet. Catal. Lett. 41, 103–108 (1990)

    Article  Google Scholar 

  15. Rabitz, H., Kramer, M., Dacol, D.: Sensitivity analysis in chemical kinetics. Ann. Rev. Phys. Chem. 34, 419–461 (1983)

    Article  Google Scholar 

  16. Schön, D.I.M.: Numerical modelling of anaerobic digestion processes in agricultural biogas plants. Ph.D. thesis, Universität Innsbruck, Austria (2009)

  17. Bajpai, P.: Anaerobic Technology in Pulp and Paper Industry. Springer Briefs in Applied Sciences and Technology. Springer, Berlin (2017)

    Book  Google Scholar 

  18. Boe, K.: Online monitoring and control of the biogas process. Ph.D. thesis, Institute of Environment and Resources. Technical University of Denmark, Lyngby, Denmark (2006)

  19. Buswell, A.M., Mueller, H.F.: Mechanisms of methane fermentation. Ind. Eng. Chem. 44, 550–552 (1952)

    Article  Google Scholar 

  20. Stronach, S.M., Rudd, T., Lester, J.N.: Anaerobic Digestion Processes in Industrial Wastewater Treatment. Springer, Berlin (1986)

    Book  Google Scholar 

  21. Moosbrugger, R.E., Wentezel, M.C., Ekama, G.A., Marais, G.V.: Weak acid/bases and pH control in anaerobic systems: a review. Water S. Afr. 19, 1–10 (1993)

    Google Scholar 

  22. Horiuchi, J., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82(3), 209–213 (2002)

    Article  Google Scholar 

  23. Ahring, B.K., Sandberg, M., Angelidaki, I.: Volatile fatty acids as indicators of process imbalance in anaerobic digesters. Appl. Microbiol. Biotechnol. 43, 559–565 (1995)

    Article  Google Scholar 

  24. Turányi, T., Tomlin, A.S.: Analysis of Kinetic Reaction Mechanisms. Springer, Berlin (2014)

    Book  Google Scholar 

  25. Lethlean, J., Swarbrick, G.: The use of thermodynamics to model the biodegradation processes in municipal solid waste landfills. In: International Waste Management and Landfill Symposium, Cagliari, Italy: CISA. Environmental Sanitary Engineering Centre, pp. 238–242 (2001)

  26. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  Google Scholar 

  27. Bui, T.D., Bui, T.R.: Numerical methods for extremely stiff systems of ordinary differential equations. Appl. Math. Model. 3, 355–358 (1979)

    Article  Google Scholar 

  28. De Bortoli, A.L., Andreis, G.S.L., Pereira, F.N.: Modeling and Simulation of Reactive Flows, 1st edn. Elsevier, New York (2015)

    Google Scholar 

  29. Zhang, H., Linford, J.C., Sandu, A., Sander, R.: Chemical mechanism solvers in air quality models. Atmosphere 2, 520–532 (2011)

    Article  Google Scholar 

  30. Bergland, W. H., Dinamarca, C., Bakke, R.: Temperature effects in anaerobic digestion modeling. In: Proceedings of the 56th SIMS, Linköping, Sweden, pp. 261–269 (2015)

Download references

Acknowledgements

This research is being developed at the Federal University of Rio Grande do Sul-UFRGS. The author M.I. Silva thanks the financial support of CNPq-Conselho Nacional de Desenvolvimento Científico e Tecnológico, under Grant 142560/2018-9. Professor De Bortoli gratefully acknowledges the financial support of CNPq, under Grant 306768/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.I., De Bortoli, A.L. Sensitivity Analysis for Verification of an Anaerobic Digestion Model. Int. J. Appl. Comput. Math 6, 38 (2020). https://doi.org/10.1007/s40819-020-0791-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-0791-z

Keywords

Navigation