Skip to main content
Log in

Unsteady Bioconvection in a Squeezing Flow of a Couple-Stress Fluid Through Horizontal Channel

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The bioconvection in an unsteady flow of an incompressible couple-stress fluid consists of microorganisms between two parallel plates is considered. A model containing coupled non-linear system of partial differential equations for the mass, momentum, energy, mass diffusion, and microorganisms is reduced to a set of non-linear ordinary differential equations with the help of suitable transformations. The resulting non-linear ordinary differential equations are linearized using successive linearization method and then Chebyshev collocation method is used to solve resulting system of linearized ordinary differential equations. The comprehensive investigation demonstrating the impacts of various fluid flow governing physical parameters such as the couple-stress parameter, squeezing parameter, the bioconvection Schmidt number, Prandtl numbers, Lewis number and bioconvection Peclet number on the distributions of dimensionless velocity, temperature, concentration and motile microorganism is graphically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stefan, M.J.: Versuche, uber die scheinbare adh¨asion, Akadenie deer Wissenschaften in Wien, Math.-Naturw 69, 713–721 (1874)

  2. Rashidi, M.M., Shahmohamadi, H., Dinarvand, S.: Analytic approximate solutions for unsteady two dimensional and axisymmetric squeezing flows between parallel plates. Math. Probl. Eng. ID 935095 (2008)

  3. Mustafa, M., Hayat, T., Obaidat, S.: On heat and mass transfer in the unsteady squeezing flow between parallel plates. Meccanica 47(7), 1581–1589 (2012)

    Article  MathSciNet  Google Scholar 

  4. Petrov, A.G., Kharlamova, I.S.: The solutions of Navier–Stokes equations in squeezing flow between parallel plates. Eur. J. Mech. B. Fluids 48, 40–48 (2014)

    Article  MathSciNet  Google Scholar 

  5. Qayyum, M., Khan, H., Rahim, M.T., Ullah, I.: Modeling and analysis of unsteady axisymmetric squeezing fluid flow through porous medium channel with slip boundary. PLoS ONE 10(3), e0117368 (2015)

    Article  Google Scholar 

  6. Ullah, I., Rahim, M.T., Khan, H., Qayyum, M.: Analytical analysis of squeezing flow in porous medium with MHD effect, U.P.B. Sci. Bull., Ser. A, 78(2):281–292 (2016)

  7. Khan, H., Qayyum, M., Khan, O., Ali, M.: Unsteady squeezing flow of casson fluid with magnetohydrodynamic effect and passing through porous medium. Math. Probl. Eng. ID 4293721 (2016)

  8. Acharya, N., Das, K., Kundu, P.: The squeezing flow of Cu-water and Cu-kerosene nanofluid between two parallel plates. Alex. Eng. J. 55, 1177–1186 (2016)

    Article  Google Scholar 

  9. Sobamowo, M.G., Akinshilo, A.T.: On the analysis of squeezing flow of nanofluid between two parallel plates under the influence of magnetic field. Alex. Eng. J. 57, 1413–1423 (2017)

    Article  Google Scholar 

  10. Adesanya, S.O., Ogunseye, H.A., Srinivas, J.: Unsteady squeezing flow of a radiative Eyring–Powell fluid channel flow with chemical reactions. Int. J. Therm. Sci. 125, 440–447 (2018)

    Article  Google Scholar 

  11. Stokes, V.K.: Couple stresses in fluid. Phys. Fluids 9, 1709–1715 (1966)

    Article  Google Scholar 

  12. Srinivasacharya, D., Srinivasacharyulu, N., Odelu, O.: Flow and heat transfer of couple stress fluid in a porous channel with expanding and contracting walls. Int. Commun. Heat Mass Transf. 36, 180–185 (2009)

    Article  Google Scholar 

  13. Srinivasacharya, D., Kaladhar, K.: Analytical solution for Hall and ion-slip effects on couple stress fluid between the parallel disks. Math. Comput. Model. 57, 2494–2509 (2013)

    Article  Google Scholar 

  14. Nayak, A., Dash, G.C.: Magnetohydrodynamic couple stress fluid flow through a porous medium in a rotating channel. J. Eng. Thermophys. 24, 283–295 (2015)

    Article  Google Scholar 

  15. Khan, N.A., Khan, H., Ali, S.A.: Exact solutions for MHD flow of couple stress fluid with heat transfer. J. Egypt. Math. Soc. 24, 125–129 (2016)

    Article  MathSciNet  Google Scholar 

  16. Saad, H.S., Ashmawy, E.A.: Unsteady plane coquette flow of an incompressible couple stress fluid with slip boundary conditions. Int J Med Health Sci Res. 3(7), 85–92 (2016)

    Google Scholar 

  17. Hayat, T., Sajjad, R., Alsaedi, A., Muhammad, T., Ellahi, R.: On squeezed flow of couple stress nanofluid between two parallel plates. Results Phys. 7, 553–561 (2017)

    Article  Google Scholar 

  18. Ilani, S.S., Ashmawy, E.A.: A time dependent slip flow of a couple stress fluid between two parallel plates through state space. J. Taibah Univ. Sci. 12(5), 592–599 (2018)

    Article  Google Scholar 

  19. Madalli, V.S., Patil, S., Hiremath, A., Ramesh, K.: Analysis of the viscosity dependent parameters of couple stress fluid in porous parallel plates. Ind. Lubr. Tribol. 70(6), 1086–1093 (2018)

    Article  Google Scholar 

  20. Platt, J.R.: Bioconvection Patterns in cultures of free-swimming organisms. Science 133, 1766–1767 (1961)

    Article  Google Scholar 

  21. Kessler, J.O.: Hydrodynamic focusing of motile algal cells. Nature 313, 218–220 (1985)

    Article  Google Scholar 

  22. Kuznetsov, A.V.: The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur. J. Mech. B/Fluids 25, 223–233 (2006)

    Article  MathSciNet  Google Scholar 

  23. Childress, S., Levandowsky, M., Spiegel, E.A.: Pattern formation in a suspension of swimming microorganisms: equations and stability theory. J. Fluid Mech. 63, 591–613 (1975)

    Article  Google Scholar 

  24. Pedley, T.J., Hill, N.A., Kessler, J.O.: The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. J. Fluid Mech. 195, 223–237 (1988)

    Article  MathSciNet  Google Scholar 

  25. Ghorai, S., Hill, N.A.: Development and stability of gyrotactic plumes in bioconvection. J. Fluid Mech. 400, 1–31 (1999)

    Article  MathSciNet  Google Scholar 

  26. Ghorai, S., Hill, N.A.: Periodic arrays of gyrotactic plumes in bioconvection. Phys. Fluids 12, 5–22 (2000)

    Article  Google Scholar 

  27. Zhao, Q., Xu, H., Tao, L.: Unsteady bioconvection squeezing flow in a horizontal channel with chemical reaction and magnetic field effects. Math. Probl. Eng. ID 62858 (2017)

  28. Bin-Mohsin, B., Ahmed, N.A., Khan, U., Mohyud-Din, S.T.: A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms. Eur. Phys. J. Plus 132, 187 (2017)

    Article  Google Scholar 

  29. Motsa, S.S., Shateyi, S.: Successive linearisation solution of free convection non-Darcy flow with heat and mass transfer. Adv. Top. Mass Transf. 19, 425–438 (2006)

    Google Scholar 

  30. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, ThA: Spectral Methods—Fundamentals in Single Domains. Berlin Heidelberg, Springer-Veralg (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Srinivasacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasacharya, D., Sreenath, I. Unsteady Bioconvection in a Squeezing Flow of a Couple-Stress Fluid Through Horizontal Channel. Int. J. Appl. Comput. Math 6, 30 (2020). https://doi.org/10.1007/s40819-020-0779-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-0779-8

Keywords

Navigation