Skip to main content
Log in

Influence of Magnetic Field, Thermal Radiation and Brownian Motion on Water-Based Composite Nanofluid Flow Passing Through a Porous Medium

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper explored the effects of a three-dimensional water composite nanofluid fluid flow between two horizontal parallel platelets in a rotating device. Different criteria contrast the flow properties of the conventional fluid (water), nanofluid cup-water, Al2O3 and composite Nanofluid. Through efficient transformations, nonlinear dimensional equations are translated into dimensional expressions. For the resolution of the dimensionless Ordinary differential equations system, a semi-analytical analytical homotopy technique is used. In order to test flow, heat, and mass transmission, a graphical analysis was performed with various variables. Relevant and Graphic view with skin friction numerical values, Nusselt local count and the Sherwood counters. The magnetic parameter has been shown to speed up. Heat transmission also improves through thermophoresis, magnetic field and thermophoresis, whilst thermophoresis, Schmidt numbers and Brownian motion help to reduce the mass transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

T :

Temperature (K)

u, v, w :

Velocity components along x, y, z axes, respectively \(({\mathrm{m}}\,{\mathrm{s}}^{-1})\)

B 0 :

External uniform magnetic field (\({\mathrm{A}}\,{\mathrm{m}}^{-1})\)

C p :

Specific heat at constant pressure J KD−1 K

g:

Acceleration due to gravity \(\left({\mathrm{m}}\,{\mathrm{s}}^{-2}\right)\)

k 1 :

Thermal conductivity W m−1 K−1

k 1 :

Permeability of the fluid \(\left({\mathrm{m}}^{-1}\right)\)

M:

Magnetic parameter (ratio of Lorentz force to viscous force)

Pr :

Prandtl number (ratio of momentum diffusivity to thermal diffusivity)

L:

Distance between the plates

ρ :

Density (kg \({\mathrm{m}}^{-3})\)

σ :

Electrical conductivity (\({\mathrm{m}}^{-1}\,\mathrm{s})\)

∅:

Nanoparticle volume fraction

θ :

Dimensionless temperature (\(\theta =\frac{\mathrm{T}-{T}_{L}}{{T}_{w}-{T}_{L}}\))

Φ:

Dimensionless concentration \((\Phi =\frac{\mathrm{C}-{C}_{L}}{{C}_{w}-{C}_{L}})\)

μ :

Dynamic viscosity (\({\mathrm{m}}^{2}\,{\mathrm{s}}^{-1})\)

φ :

Porosity

κ :

Permeability (dimensionless)

Ω:

Constant rotation velocity \((\mathrm{m}\,{\mathrm{s}}^{-1})\)

ν :

Kinematic viscosity \({(\mathrm{m}}^{2}\,{\mathrm{s}}^{-1})\)

η :

Dimensionless variable

f :

Fluid phase

nf :

Nano-fluid

s :

Solid phase

References

  1. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Mater. Sci. 231, 99–105 (1995)

    Google Scholar 

  2. Eastman, J.A., Choi, U.S., Li, S., Soyez, G., Thompson, L.J., DiMelfi, R.J.: Novel thermal properties of nanostructured materials. Mater. Sci. Forum 312–314, 629–634 (1999)

    Article  Google Scholar 

  3. Goud, V.M., Vaisakh, V., Joseph, M., Sajith, V.: An experimental investigation on the evaporation of polystyrene encapsulated phase change composite material based nanofluids. Appl. Therm. Eng. 168, 114862 (2020)

    Article  Google Scholar 

  4. Chaudhari, S.S., Chakule, R.R., Tamale, P.S.: Experimental study of heat transfer characteristics of Al2O3 and CuOnanofluids for machining application. Mater. Today Proc. 18, 788–797 (2019)

    Article  Google Scholar 

  5. Khan, I.: A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water-based nanofluids with inclined plate: Atangana-Baleanu fractional model. Chaos Solitons Fractals 115, 135–142 (2018)

    Article  MathSciNet  Google Scholar 

  6. Hartmann, J.: Hg-dynamics I theory of the laminar flow of an electrically conductive liquid in a homogenous magnetic field. Det Kongelige Danske Videnskabernes Selskab Mathematik-fysiske Meddeleser 15, 1–27 (1937)

  7. Lund, I.A., Omar, Z., Khan, I., Seikh, A.H., Nisar, K.S.: Stability analysis and multiple solutions of Cu–Al2O3/H2O nanofluid contains hybrid nanomaterials over a shrinking surface in the presence of viscous dissipation. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2019.10.071

    Article  Google Scholar 

  8. Farman, F.A., Nadeem, A., Sheikh, A., Khan, I., Nisar, K. S.: Caputo Fabrizio fractional derivatives modelling of transient MHD Brinkman nano liquid: applications in food technology. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2019.109489

    Article  Google Scholar 

  9. Sheikholeslami, M., Seyednezhad, M.: Nanofluid heat transfer in a permeable enclosure in the presence of variable magnetic field utilizing CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017)

    Article  Google Scholar 

  10. Hayat, T., Qayyum, S., Alsaedi, A., Ahmad, B.: Magnetohydrodynamic (MHD) nonlinear convective flow of Walters-B nanofluid over a nonlinear stretching sheet with variable thickness. Int. J. Heat Mass Transf. 110, 506–514 (2017)

    Article  Google Scholar 

  11. Hayat, T., Saleem, A., Tanveer, A., Alsaadi, F.: Numerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall properties. Int. J. Heat Mass Transf. 114, 1181–1187 (2017)

    Article  Google Scholar 

  12. Hayat, T., Farooq, S., Ahmad, B., Alsaedi, A.: Peristalsis of Eyring-Powell magneto nanomaterial considering Darcy-Forchheimer relation. Int. J. Heat Mass Transf. 115, 694–702 (2017)

    Article  Google Scholar 

  13. Patel, H.R., Mittal, A.S., Darji, R.R.: MHD flow of micropolarnanofluid over a stretching/shrinking sheet considering radiation. Int. Commun. Heat Mass Transfer 108, 104322 (2019)

    Article  Google Scholar 

  14. Ali, F., Gohar, M., Khan, I., Sheikh, N.A., Alam, S.A.: Thermal radiation and magnetic field effects on different channel flows of C.N.T.s Brinkman-type nanofluids with water, kerosene and engine-oil. Inter. J. Comput. Anal. 1(2), 1–17 (2018)

    Google Scholar 

  15. Sheikholeslami, M., Shamlooei, M.: Fe3O4–H2O nanofluid natural convection in the presence of thermal radiation. Int. J. Hydrogen Energy 42(9), 5708–5718 (2017)

    Article  Google Scholar 

  16. Sheikholeslami, M., Hayat, T., Alsaedi, A.: MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int. J. Heat Mass Transf. 96, 513–524 (2016)

    Article  Google Scholar 

  17. Hayat, T., Shafique, M., Tanveer, A., Alsaedi, A.: Slip and Joule heating effects on radiative peristaltic flow of hyperbolic tangent nanofluid. Int. J. Heat Mass Transf. 112, 559–567 (2017)

    Article  Google Scholar 

  18. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Yasmeen, T.: Impact of Marangoni convection in the flow of carbon–water nanofluid with thermal radiation. Int. J. Heat Mass Transf. 106, 810–815 (2017)

    Article  Google Scholar 

  19. Kataria, H.R., Patel, H.R.: Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through a porous medium. Alexandria Eng. J. 55, 2125–2137 (2016a)

    Article  Google Scholar 

  20. Ali, F., Sheikh, N.A., Saqib, M., Khan, I.: Unsteady MHD flow of second-grade fluid over an oscillating vertical plate with isothermal temperature in a porous medium with heat and mass transfer by using the Laplace transform technique. J. Porous Media 20(8), 671–690 (2017). https://doi.org/10.1615/JPorMedia.v20.i8.10

    Article  Google Scholar 

  21. Aleem, M., Asjad, M.I., Shaheen, A., Khan, I.: MHD influence on different water-based nanofluids (TiO2, Al2O3, CuO) in a porous medium with chemical reaction and Newtonian heating. Chaos Solitons Fractals 130, 109437 (2020)

    Article  MathSciNet  Google Scholar 

  22. Xu, H.J., Xing, Z.B., Wang, F.Q., Cheng, Z.M.: Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem. Eng. Sci. 195, 462–483 (2019)

    Article  Google Scholar 

  23. Sheikholeslami, M., Shehzad, S.A.: Magnetohydrodynamicnanofluid convective flow in a porous enclosure utilizing L.B.M. Inter. J. Heat Mass Trans. 113, 796–805 (2017)

    Article  Google Scholar 

  24. Sheremet, M.A., Mehryan, S.A.M., Pop, I., Öztop, H.F.: NidalAbu-Hamdehf, MHD thermogravitational convection and thermal radiation of a micropolar nano liquid in a porous chamber. Int. Commun. Heat Mass Trans. 110, 104409 (2020)

    Article  Google Scholar 

  25. Kataria, H.R., Patel, H.R.: Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in a porous medium. Alexandria Eng. J. 55, 583–595 (2016b)

    Article  Google Scholar 

  26. Patel, H.R., Singh, R.: Thermophoresis, Brownian motion and nonlinear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in a porous medium with viscous dissipation, Joule heating and convective boundary condition. Int. Commun. Heat Mass Trans. 107, 68–92 (Octo)

    Article  Google Scholar 

  27. Mittal, A.S., Patel, H.R.: Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with nonlinear radiation and heat generation. Phys. A 537, 122710 (2020)

    Article  MathSciNet  Google Scholar 

  28. Kataria, H.R., Mittal, A.S.: Velocity, mass and temperature analysis of gravity-driven convection nanofluid flow past an oscillating vertical plate in the presence of a magnetic field in a porous medium. Appl. Therm. Eng. 110, 864–874 (2017)

    Article  Google Scholar 

  29. Mittal, A.S., Kataria, H.R.: Three dimensional CuO–water nanofluid flow considering Brownian motion in the presence of radiation. Karbala Inter. J. Mod. Sci. 4(3), 275–286 (2018)

    Article  Google Scholar 

  30. Rosseland, S.: Astrophysik und atom-theoretischeGrundlagen. Springer, Berlin (1931)

    MATH  Google Scholar 

  31. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/C.R.C. Press, Boca Raton (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul P. Mehta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, R.P., Kataria, H.R. Influence of Magnetic Field, Thermal Radiation and Brownian Motion on Water-Based Composite Nanofluid Flow Passing Through a Porous Medium. Int. J. Appl. Comput. Math 7, 7 (2021). https://doi.org/10.1007/s40819-020-00938-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00938-8

Keywords

Navigation