Skip to main content
Log in

On Computational Efficiency and Dynamical Analysis for a Class of Novel Multi-step Iterative Schemes

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a novel multi-step iterative scheme to solve system of nonlinear equations. Because the cost of calculating the Fréchet derivative evaluation and its inversion is significant, in order to achieve its high computational efficiency, we have tried to calculate Fréchet derivative and its inverse less per cycle by using the proposed multi-step iterative schemes. The basic iterative scheme has a convergence order of four; therefore, repetition of the second step can achieve higher convergence order. In fact, adding a new step to the base iterative scheme each time increases the convergence order by two units. The multi-step iterative schemes have convergence-order 2m, where m is the number of steps of the multi-step iterative schemes. Also, the computational efficiency of the iterative scheme is compared with other available methods. The numerical results presented confirm the theoretical results. A number of nonlinear system of equations associated with the numerical approximation of ordinary, partial, and fractional differential equations are made up and solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  2. Dehghan, M., Hajarian, M.: Asynchronous multisplitting GAOR method and asynchronous multisplitting SSOR method for systems of weakly nonlinear equations. Mediterr. J. Math. 7, 209–223 (2010)

    Article  MathSciNet  Google Scholar 

  3. Dehghan, M., Shirilord, A.: Three step iterative methods for numerical solution of systems of nonlinear equations. Eng. Comput. (2020). https://doi.org/10:1007/s00366.020.01072.1

  4. Dehghan, M., Hajarian, M.: Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations. Comput. Appl. Math. 29, 19–30 (2010)

    Article  MathSciNet  Google Scholar 

  5. Dehghan, M., Hajarian, M.: New iterative method for solving nonlinear equations with fourth-order convergence. Int. J. Comput. Math. 87, 834–839 (2010)

    Article  MathSciNet  Google Scholar 

  6. Aslam Noor, M.: Fourth-order iterative method free from second derivative for solving nonlinear equations. Appl. Math. Sci. 6, 4617–4625 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Rafiullah, M., Jabeen, D.: New eighth and sixteenth order iterative methods to solve nonlinear equations. Int. J. Appl. Comput. Math. 3, 2467–2476 (2017)

    Article  MathSciNet  Google Scholar 

  8. Madhu, K., Jayaraman, J.: Some higher order newton-like methods for solving system of nonlinear quations and its applications. Int. J. Appl. Comput. Math. 3, 2213–2230 (2017)

    Article  MathSciNet  Google Scholar 

  9. Baccouch, M.: A family of high order numerical methods for solving nonlinear algebraic equations with simple and multipler roots. Int. J. Appl. Comput. Math. 3, 1119–1133 (2017)

    Article  MathSciNet  Google Scholar 

  10. Baccouch, M.: A family of high order derivative-free iterative methods for solving root-finding problems. Int. J. Appl. Comput. Math. (2019). https://doi.org/10.1007/s40819-019-0641-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Amrein, M., Hilber, N.: Adaptive newton-type schemes based on projections. Int. J. Appl. Comput. Math. (2020). https://doi.org/10.1007/s40819-020-00868-5

    Article  MathSciNet  Google Scholar 

  12. Argyros, I.K., Shakhno, S., Yarmola, H.: Two-step solver for equations with nondifferentiable term. Int. J. Appl. Comput. Math. (2019). https://doi.org/10.1007/s40819-019-0680-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  14. Cordero, A., Hueso, J.L., Martinez, E., Torregrosa, J.R.: A modified Newton–Jarratts composition. Numer. Algor. 55, 87–99 (2010)

    Article  MathSciNet  Google Scholar 

  15. Soleymani, F., Lotfi, T., Bakhtiari, P.: A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)

    Article  MathSciNet  Google Scholar 

  16. Esmaeili, H., Ahmadi, M.: An efficient three-step method to solve system of nonlinear equations. Appl. Math. Comput. 266, 1093–1101 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Ortega, J.M., Rheinboldt, W.C.: Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  18. Babajee, D.K.R., Dauhoo, M.Z.: Convergence and spectral analysis of the Frontini–Sormani family of multipoint third order methods from Quadrature rule. Numer. Algor. 53, 467–484 (2010)

    Article  Google Scholar 

  19. Montazeri, H., Soleymani, F., Shateyi, S., Motsa, S. S.: On a new method for computing the numerical solution of systems of nonlinear equations. J. Appl. Math. 2012, 15 (2012). https://doi.org/10.1155/2012/751975

  20. Ullah, M.Z., Serra-Capizzano, S., Ahmad, F., Al-Aidarous, E.S.: Higher order multi-step iterative methods for computing the numerical solution of systems of nonlinear equations: application to nonlinear PDEs and ODEs. Appl. Math. Comput. 269, 972–987 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Qasima, S., Ali, Z., Ahmad, F., Serra-Capizzano, S., Ullah, M.Z., Mahmood, A.: Solving systems of nonlinear equations when the nonlinearity is expensive. Comput. Math. Appl. 71, 1464–1478 (2016)

    Article  MathSciNet  Google Scholar 

  22. Abbasbandy, S., Bakhtiari, P., Cordero, A., Torregrosa, J.R., Lotfi, T.: New efficient methods for solving nonlinear systems of equations with arbitrary even order. Appl. Math. Comput. 286–288, 94–103 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Erfanifar, R., Sayevand, K., Esmaeili, H.: A novel iterative method for the solution of a nonlinear matrix equation. Appl. Numer. Math. 153, 503–518 (2020)

    Article  MathSciNet  Google Scholar 

  24. Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)

    MATH  Google Scholar 

  25. Cordero, A., Torregrosa, J.R.: Variants of Newton method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Erfanifar, R., Sayevand, K., Esmaeili, H.: On modified two-step iterative method in the fractional sense: some applications in real world phenomena. Int. J. Comput. Math. (2019). https://doi.org/10.1080/00207160.2019.1683547

    Article  Google Scholar 

  27. Sauer, T.: Numerical Analysis, 2nd edn. Pearson, London (2012)

    MATH  Google Scholar 

  28. Cordero, A., Feng, L., Magrenan, A., Torregrosa, J.R.: A new fourth-order family for solving nonlinear problems and its dynamics. J. Math. Chem. 53(3), 893–910 (2015)

    Article  MathSciNet  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  30. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Analysis of a meshless method for the time fractional diffusion-wave equation. Numer. Algor. 73, 445–476 (2016)

    Article  MathSciNet  Google Scholar 

  31. Dehghan, M., Abbaszadeh, M., Mohebbib, A.: Analysis of two methods based on Galerkin weak form for fractional diffusion-wave: meshless interpolating element free Galerkin (IEFG) and finite element methods. Eng. Anal. Bound. Elem. 64, 205–221 (2016)

    Article  MathSciNet  Google Scholar 

  32. He, J.H.: Nonlinear oscillation with fractional derivative and its applications. Int. Conf. Vib. Eng. 98, 288–291 (1998)

    Google Scholar 

  33. Mainardi, F.: Fractional calculus. In: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Vienna, pp. 291–348 (1997)

  34. Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multiterm time fractional diffusionwave equations. J. Comput. Appl. Math. 290, 174–195 (2015)

    Article  MathSciNet  Google Scholar 

  35. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  Google Scholar 

  36. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \( r^n \). J. Math. Phys. 54(3), 031501 (2013)

  37. Li, M., Gu, X.M., Huang, C., Fei, M., Zhangd, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)

    Article  MathSciNet  Google Scholar 

  38. Li, M., Zhao, Y.L.: A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator. Appl. Math. Comput. 338(1), 758–773 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Li, M., Huang, C.: An efficient difference scheme for the coupled nonlinear fractional Ginzburg Landau equations with the fractional Laplacian. Numer. Methods Partial Differ. Equ. 35(1), 394–421 (2019)

    Article  MathSciNet  Google Scholar 

  40. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algor. 74(1), 499–525 (2017)

    Article  Google Scholar 

  41. Robinson, R.C.: An Introduction to Dynamical Systems, Continuous and Discrete. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  42. Cordero, A., Soleymani, F., Torregrosa, J.R.: Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Appl. Math. Comput. 244, 398–412 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their cordial thanks to the anonymous referees and editor of the journal for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sayevand.

Ethics declarations

Conflicts of interest

This work does not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevand, K., Erfanifar, R. & Esmaeili, H. On Computational Efficiency and Dynamical Analysis for a Class of Novel Multi-step Iterative Schemes. Int. J. Appl. Comput. Math 6, 163 (2020). https://doi.org/10.1007/s40819-020-00919-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00919-x

Keywords

Mathematics Subject Classification

Navigation