Skip to main content
Log in

Efficient Computational Approach for Generalized Fractional KdV–Burgers Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A collocation method based on double summations of Mittag–Leffler functions is proposed to solve the Korteweg–de Vries (KdV) and Burgers equation of fractional order with initial-boundary conditions. The resulting algebraic system is constructed as a constrained optimization problem and optimized to obtain the unknown coefficients. Error analysis of the approximation solution is studied. Simulations of the results are studied graphically through representations for the effect of fractional order parameters and time levels. The results ensure that the proposed method is accurate and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arafa, A.A.M., Rida, S.Z., Ali, H.M.: Generalized Mittag–Leffler function method for solving Lorenz system. Int. J. Innov. Appl. Stud. 3(1), 105–111 (2013)

    Google Scholar 

  2. Arafa, A.A.M., Rida, S.Z., Mohammadein, A.A., Ali, H.M.: Solving nonlinear fractional differential equation by generalized Mittag–Leffler function method. Commun. Theor. Phys. 59(6), 661–663 (2013)

    Article  MathSciNet  Google Scholar 

  3. Arafa, A.A.M., Rida, S.Z.: Numerical solutions for some generalized coupled nonlinear evolution equations. Math. Comput. Model. 56(11), 268–277 (2012)

    Article  MathSciNet  Google Scholar 

  4. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. Math. Methods Appl. Sci. 42, 7296–7313 (2019)

    Article  MathSciNet  Google Scholar 

  5. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Fractional-order enocchi–Petrov–Galerkin method for solving time-space fractional Fokker–Planck equations arising from the physical phenomenon. Int. J. Appl. Comput. Math 6, 100 (2020)

    Article  Google Scholar 

  6. Dehestani, H., Ordokhani, Y., Razzaghi, M.: A numerical technique for solving various kinds of fractional partial differential equations via Genocchi hybrid functions. RACSAM 1133297–3321, (2019)

  7. El-Hawary, H.M., Salim, M.S., Hussien, H.S.: Ultraspherical integral method for optimal control problems governed by ordinary differential equations. J. Glob. Optim. 25(3), 283–303 (2003)

    Article  MathSciNet  Google Scholar 

  8. El-Ajou, A., Abu Arqub, O., Momani, S.: Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new iterative algorithm. J. Comput. Phys. 293, 81–95 (2015)

    Article  MathSciNet  Google Scholar 

  9. Feng, Z., Knobel, R.: Traveling waves to a Burgers–Korteweg–de Vries-type equation with higher-order nonlinearities. J. Math. Anal. Appl. 328, 1435–1450 (2007)

    Article  MathSciNet  Google Scholar 

  10. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin Heidelberg (2014)

    Book  Google Scholar 

  11. Hussien, H.S.: Efficient collocation operational matrix method for delay differential equations of fractional order. Iran. J. Sci. Technol. Trans. A Sci. 1, 1 (2018). https://doi.org/10.1007/s40995-018-0644-31-10

    Article  Google Scholar 

  12. Hussien, H.S., Akel, M.S., El Khatib, M.A.: A spectral optimization method for solving boundary value problems for nonlinear systems of elliptic partial differential equations with a package software. Int. J. Numer. Methods Appl. 4(2), 57–75 (2010)

    MATH  Google Scholar 

  13. Jaiswal, S., Das, S.: Numerical solution of linear/nonlinear fractional order differential equations using jacobi operational matrix. Int. J. Appl. Comput. Math. 5(2), 1–42 (2019)

    Article  MathSciNet  Google Scholar 

  14. Khader, M.M., Saad, K.M.: On the numerical evaluation for studying the fractional KdV, KdV–Burgers and Burgers equations. Eur. Phys. J. Plus (2018). https://doi.org/10.1140/epjp/i2018-12191-x133:335

    Article  Google Scholar 

  15. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37(7), 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kurulay, M., Bayram, M.: Approximate analytical solution for the fractional modified KdV by differential transform method. Commun. Nonlinear Sci Numer. Simul. 15, 1777–1782 (2010)

    Article  MathSciNet  Google Scholar 

  17. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Willey, New York (1993)

    MATH  Google Scholar 

  18. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, LLC (2008)

    Book  Google Scholar 

  19. Momani, S.: An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, 110–118 (2005)

    Article  MathSciNet  Google Scholar 

  20. Ozis, T., Aksan, E.N., Ozdes, A.: A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 139, 417–428 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Pandey, K., Verma, L., Verma, A.K.: On a finite difference scheme for Burgers’ equation. Appl. Math. Comput. 215(6), 2206–2214 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Rahimkhani, P., Ordokhani, Y.: A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ. 35, 34–59 (2019)

    Article  MathSciNet  Google Scholar 

  23. Rida, S.Z., Arafa, A.A., Mohammadein, M.A.A., Ali, H.M.: New method for solving linear fractional differential equations. Int. J. Differ. Equ. 814132, 1–8 (2011)

    MathSciNet  Google Scholar 

  24. Rida, S.Z., Hussien, H.S.: Efficient Mittag–Leffler collocation method for solving linear and nonlinear fractional differential equations. Medit. J. Math. 15, 130 (2018)

    Article  MathSciNet  Google Scholar 

  25. Safari, M., Ganji, D.D., Moslemi, M.: Application of He’s variational iteration method and Adomian’s decomposition method to the fractional KdV–Burgers–Kuramoto equation. Comput. Math. Appl. 58, 2091–2097 (2009)

    Article  MathSciNet  Google Scholar 

  26. Sahoo, S., Ray, S.S.: A new method for exact solutions of variant types of time-fractional Korteweg–de Vries equations in shallow water waves. Math. Methods Appl. Sci. 40(1), 106–114 (2017)

    Article  MathSciNet  Google Scholar 

  27. Siraj-ul-Islam, Khattak, A.J., Tirmizi I.A: A meshfree method for numerical solution of KdV equation. Eng. Anal. Bound. Elem. 32(10), 49–855 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hussien S. Hussien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rida, S.Z., Hussien, H.S. Efficient Computational Approach for Generalized Fractional KdV–Burgers Equation. Int. J. Appl. Comput. Math 6, 156 (2020). https://doi.org/10.1007/s40819-020-00915-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00915-1

Keywords

Mathematics Subject Classification

Navigation