Skip to main content
Log in

Solution of Initial Value Problems Using an Operational Matrix

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a novel operational matrix method is introduced. This method is based on the frame of linear cardinal B-spline. We call this method as the frame operational matrix (FOM) method. First, we construct the operational matrix from the frame by using a collocation method. We develop the FOM method using this operational matrix. We apply this method to solve initial value problems both linear first and second order and nonlinear first order. Comparison in between our solution \((U_F)\), exact solution \((U_e)\), Haar solution \((U_H)\) and Runge Kutta solution \((U_R)\) also provided. Moreover, stability analysis is given which shows that the FOM method is of second order. Several numerical examples are provided to validate our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Baleanu, D., Shiri, B.: Collocation methods for fractional differential equations involving non-singular kernel. Chaos, Solitons Fractals 116, 136–145 (2018)

    Article  MathSciNet  Google Scholar 

  2. Baleanu, D., Shiri, B., Srivastava, H.M., Qurashi, M.A.: A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag–Leffler kernel. Adv. Differ. Equ. 2018, 353 (2018)

    Article  MathSciNet  Google Scholar 

  3. de Boor, C.: A Practical Guide to Splines. Springer, Berlin (2001)

    MATH  Google Scholar 

  4. Chen, C., Hsiao, C.: Haar wavelet method for solving lumped and distributed parameter systems. IEEE Proc. Control Theory Appl. 144, 87–94 (1997)

    Article  Google Scholar 

  5. Christensen, O.: An Introduction to Frames and Riesz Basis. Birkhauser, Berlin (2003)

    Book  Google Scholar 

  6. Chui, C.K.: An Introduction to Wavelets. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  7. Chui, C.K., Wenjie, H.: Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8, 293–319 (2000)

    Article  MathSciNet  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelet. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  9. Dharmaiah, V.: Introduction to Theory of Ordinary Differential Equations. PHI, Delhi (2013)

    MATH  Google Scholar 

  10. Doha, E.H., Bhrawy, A.H., Baleanu, D., Hafez, R.M.: Efficient Jacobi–Gauss collocation method for solving initial value problems of Bratu type. Comput. Math. Math. Phys. 53(9), 1292–1302 (2013)

    Article  MathSciNet  Google Scholar 

  11. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  12. Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Hajipour, M., Jajarmi, A., Baleanu, D.: On the accurate discretization of a highly nonlinear boundary value problem. Numer. Algorithms 79, 679–695 (2018)

    Article  MathSciNet  Google Scholar 

  14. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On the accurate discretization of a variable-order fractional reaction–diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 69, 119–133 (2019)

    Article  MathSciNet  Google Scholar 

  15. Jena, M.K., Sahu, K.S.: Haar wavelet operational matrix method to solve initial value problems: a short survey. Int. J. Appl. Comput. Math. 3(4), 3961–3975 (2017)

    Article  MathSciNet  Google Scholar 

  16. Khalil, H., Khan, R.A., Baleanu, D., Rashidi, M.M.: Some new operational matrices and its application to fractional order Poisson equations with integral type boundary constrains. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2016.04.014

    Article  MathSciNet  Google Scholar 

  17. Lepik, U.: Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul. 68, 127–143 (2005)

    Article  MathSciNet  Google Scholar 

  18. Lepik, U., Hein, H.: Haar Wavelets with Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  19. Mattheij, R., Molenaar, J.: Ordinary Differential Equations in Theory and Practice. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  20. Mingxu, Yi, Huang, Jua: Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl. Math. Comput. 230, 383–394 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Patra, A., Ray, S.S.: Numerical simulation based on Haar wavelet operational method to solve neutron point kinetics equation involving sinusoidal and pulse reactivity. Ann. Nucl. Energy 73, 408–412 (2014)

    Article  Google Scholar 

  22. Raza, A., Khan, A.: Haar wavelet series solution for solving neutral delay differential equations. J. King Saud Univ. Sci. (2018). https://doi.org/10.1016/j.jksus.2018.09.013

    Article  Google Scholar 

  23. Roshan, S.S., Jafari, H., Baleanu, D.: Solving FDEs with Caputo–Fabrizio Derivative by Operational Matrix Based on Genocchi Polynomials. Wiley, Hoboken (2019). https://doi.org/10.1002/mma.5098

    Book  MATH  Google Scholar 

  24. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  25. Shiri, B., Baleanu, D.: Numerical solution of some fractional dynamical systems in medicine involving non-singular kernel with vector order. Results Non-linear Anal. 2(4), 160–168 (2019)

    Google Scholar 

  26. Zaky, M.A., Baleanu, D., Alzaidy, J.F., Hashemizadeh, E.: Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation. Adv. Differ. Equ. 2018, 102 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very much thankful to the referees who give their precious time to read this manuscript and confer their judgement to improve the quality of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshama Sagar Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Frame matrix for \(J=0\left( M=3\right) \)

$$\begin{aligned} F_0= & {} \left( \begin{array}{ccc} 0.6667 &{} 2.0000 &{} 0.6667 \\ -0.9428 &{} 0.0000 &{} 0.9428 \\ -0.6667 &{} 2.0000 &{} -0.6667 \end{array}\right) .\\ P_1= & {} \left( \begin{array}{ccc} 0.5000 &{} 0.4714 &{} -0.2500 \\ -0.1473 &{} -0.0000 &{} -0.0295 \\ 0.0000 &{} 0.0589 &{} -0.0000 \end{array}\right) .\\ P_2= & {} \left( \begin{array}{ccc} 0.2963 &{} 0.3536 &{} -0.2130 \\ 0.3536 &{} 0.2130 &{} -0.0000 \\ -0.0231 &{} -0.1768 &{} 0.1898 \end{array}\right) . \end{aligned}$$

Frame matrix for \(J=1\left( M=7\right) \)

$$\begin{aligned} F_0= & {} \left( \begin{array}{ccccccc} 0.2857 &{} 0.8571 &{} 1.4286 &{} 2.0000 &{} 1.4286 &{} 0.8571 &{} 0.2857 \\ -0.4041 &{} -1.2122 &{} -0.8081 &{} 0 &{} 0.8081 &{} 1.2122 &{} 0.4041 \\ -0.8081 &{} -0.4041 &{} 1.2122 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -1.2122 &{} 0.4041 &{} 0.8081 \\ -0.2857 &{} -0.8571 &{} 0.2857 &{} 2.0000 &{} 0.2857 &{} -0.8571 &{} -0.2857 \\ -0.5714 &{} 1.1429 &{} -0.5714 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} -0.5714 &{} 1.1429 &{} -0.5714 \end{array}\right) .\\ F_1= & {} \left( \begin{array}{ccccccc} 0.0102 &{} 0.0918 &{} 0.2551 &{} 0.5000 &{} 0.7449 &{} 0.9082 &{} 0.9898 \\ 0.0144 &{} 0.1299 &{} 0.2958 &{} 0.3536 &{} 0.2958 &{} 0.1299 &{} 0.0144 \\ 0.0577 &{} 0.3391 &{} 0.2237 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0.2237 &{} 0.3391 &{} 0.0577 \\ 0.0102 &{} 0.0918 &{} 0.1633&{} 0 &{} -0.1633&{} -0.0918&{}-0.0102 \\ 0.0408 &{} 0.1122&{} -0.1531&{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0.1531 &{} -0.1122&{}-0.0408 \end{array}\right) .\\ P_1= & {} \left( \begin{array}{ccccccc} 0.5000 &{} 0.4714 &{} 0.0034 &{} 0.4276 &{} -0.2500 &{} 0.0190 &{} -0.4190\\ -0.1726 &{} 0.0000 &{} -0.0405 &{} 0.0405 &{} -0.0042 &{} -0.0017 &{} -0.0017\\ -0.0905 &{} 0.1280 &{} -0.0310 &{} -0.0000 &{} 0.0905 &{} -0.0362 &{} 0.0000\\ -0.0905 &{} -0.1280 &{} 0.0000 &{} 0.0310 &{} 0.0905 &{} 0 &{} -0.0362\\ -0.0000 &{} 0.1094 &{} -0.0539 &{} -0.0539 &{} 0.0000 &{} 0.0167 &{} -0.0167\\ 0.0000 &{} -0.0000 &{} 0.0960 &{} 0.0000 &{} -0.0000 &{} -0.0643 &{} 0.0000\\ 0.0000 &{} 0.0000 &{} 0.0000 &{} 0.0960 &{} -0.0000 &{} 0 &{} 0.0643 \end{array} \right) .\\ {P}_2= & {} \left( \begin{array}{ccccccc} 0.2925 &{} -0.3536 &{} 0.0058 &{} -0.4300 &{} 0.2092 &{} -0.0082 &{} 0.3918\\ 0.3536 &{} -0.2092 &{} -0.0014 &{} -0.0014 &{} 0.0000 &{} -0.0221 &{} 0.0221\\ 0.2398 &{} 0.3391 &{} -0.2920 &{} -0.0000 &{} 0.2398 &{} -0.0122 &{} 0.0000\\ 0.2602 &{} -0.3680 &{} 0.0000 &{} -0.2920 &{} 0.2602 &{} 0 &{} 0.0122\\ -0.0043 &{} 0.1768 &{} -0.0250 &{} 0.0250 &{} -0.1709 &{} 0.0014 &{} 0.0014\\ 0.0036 &{} 0.0051 &{} 0.4510 &{} 0.0000 &{} 0.0036 &{} -0.5681 &{} 0.0000\\ 0.0036 &{} -0.0051 &{} 0.0000 &{} 0.5490 &{} 0.0036 &{} 0 &{} -0.5681 \end{array} \right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, K.S., Jena, M.K. Solution of Initial Value Problems Using an Operational Matrix. Int. J. Appl. Comput. Math 6, 61 (2020). https://doi.org/10.1007/s40819-020-00810-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-020-00810-9

Keywords

Mathematics Subject Classification

Navigation