Skip to main content
Log in

Divided Differences Calculus in Matrix Representation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A systematic description of actions of the divided differences operators on power and exponential functions is given. The results of actions of these operators on entire functions are presented by the matrices whose elements are functions of coefficients of a characteristic (pivot) polynomial. Effective algorithms of calculation of the matrices are constructed using the properties of the companion matrix of the pivoting polynomial. Degeneration of the roots of the pivot polynomial reduces the n-order divided differences operator to \(n-1\) order operator of differentiation. The exponential type invariant functions with respect to higher order derivatives are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dikoussar, N.D.: Method of basic elements. Math. Models Comput. Simulations 3(4), 492–507 (2011)

    Article  MathSciNet  Google Scholar 

  2. Carl, De Boor: Divided Differenes. Surv. Approx. Theory 1, 46–69 (2005)

    MathSciNet  Google Scholar 

  3. Datttoli, G., Licciardi, S., Sabia, E.: Genralized trigonometric functions and matrix parameterization. Int. J. Appl. Comput. Math. 3(Suppl 1), 115–128 (2017)

    Article  MathSciNet  Google Scholar 

  4. Yamaleev, R.: Complex algebras on N-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. Adv. Appl. Cliff. Alg. 15(1), 123 (2005)

    Article  MathSciNet  Google Scholar 

  5. Klinger, A.: The Vandermonde matrix. Amer. Math. Monthly 74, 571–574 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Aceto, L., Trigiante, D.: The matrices of Pascal and other greats. Amer. Math. Monthly 108, 232–245 (2001)

    Article  MathSciNet  Google Scholar 

  7. Vein, R., Dale, P.: Determinants and their applications in mathematical physics. Springer-Verlag, New York, Inc. (1999). ISBN 0-387-98558-1

    MATH  Google Scholar 

  8. Yamaleev, R.M.: Geometrical and physical interpretation of evolution governed by general complex algebra. J. Math. Anal. Appl. 340, 1046–1057 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cornelius Jr., E.F.: Identities for complete homogeneous symmetric polynomials. J. Algebr. Numb. Theor. Appl. 21(1), 109–116 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Blanchard, P., Devaney, R.L., Hall, G.R.: Differential Equations. Thompson. Coddington, E.A., Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill (2006)

  11. Aceto, L., Trigiante, D.: The matrices of Pascal and classical polynomials. Rendicoti del Circol Matematico in Palermo. Serie II, Suppl. 68, 219–228 (2002)

    Google Scholar 

  12. Yamaleev, R.M.: Pascal matrix representation of evolution of polynmials. Int. J. Appl. Comput. Math. 1(4), 513–525 (2015)

    Article  MathSciNet  Google Scholar 

  13. Babusci, D., Dattoli, G., Di Palma, E., Sabia, E.: Adv. Appl. Cliff. Alg. 22(2), 271 (2012)

    Article  Google Scholar 

  14. Kaufman, H.: A bibliografical note on the higher order sine functions. Scripta Math. 28, 28–36 (1967)

    Google Scholar 

  15. Yamaleev, R.M.: Difference between three quantities (2012). arXiv:1209.5012 [math.HO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Yamaleev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaleev, R.M. Divided Differences Calculus in Matrix Representation. Int. J. Appl. Comput. Math 5, 132 (2019). https://doi.org/10.1007/s40819-019-0719-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0719-7

Keywords

Navigation