Skip to main content
Log in

Solving Two-Dimensional Nonlinear Fredholm Integral Equations Using Rationalized Haar Functions in the Complex Plane

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

As far as we are aware, no research has been published about two-dimensional integral equations in the complex plane by using Haar bases or any other kinds of wavelets. We introduce a numerical method to solve two-dimensional Fredholm integral equations, using Haar wavelet bases. To attain this purpose, first, an operator and then an orthogonal projection should be defined. Regarding the characteristics of Haar wavelet, we solve an integral equation without using common mathematical methods. We prove the convergence and an upper bound that mentioned in the method by employing the Banach fixed point theorem. Moreover, the rate of convergence our method is \(O(n(2q)^n)\). We present several examples of different kinds of functions and solve them by this method in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Krantz, S.G.: A Guide to Complex Variables. ISBN: 978-0-88385-338-2 (2007)

  2. Chew, W.C., Tong, M.S., Hu, B.: Integral equation methods for electromagnetic and elastic waves. In: Synthesis Lectures on Computational Electromagnetics, vol. 3, pp. 1–241. (2008). https://doi.org/10.2200/S00102ED1V01Y200807CEM012

    Article  Google Scholar 

  3. Burton, D.M.: The History of Mathematics. McGraw-Hill, New York (1995). ISBN 978-0-07-009465-9

    Google Scholar 

  4. Nahin, P.: The Story of \(\sqrt{-1}\). Princeton University Press, Princeton (1998)

    MATH  Google Scholar 

  5. Kwok, Y.K.: Applied Complex Variables for Scientists and Engineers, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Jafari, H., Jassim, H.K.: A new approach for solving system of local fractional partial differential equations. Appl. Appl. Math. 11, 162–173 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Hosseini, V.R., Shivanian, E., Chen, W.: Local radial point interpolation (MLRPI) method for solving time fractional diffusion–wave equation with damping. J. Comput. Phys. 312, 307–332 (2016)

    Article  MathSciNet  Google Scholar 

  8. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 31–39 (2014)

    Article  MathSciNet  Google Scholar 

  9. Zeng, G., Chen, C., Lei, L., Xu, X.: A modified collocation method for weakly singular fredholm integral equations of second kind. J. Comput. Anal. Appl. 27(7), 1091–1102 (2019)

    Google Scholar 

  10. Erfanian, M., Gachpazan, M., Beiglo, M.: A new sequential approach for solving the integro–differential equation via Haar wavelet bases. Comput. Math. Math. Phys. 57(2), 297–305 (2017)

    Article  MathSciNet  Google Scholar 

  11. Erfanian, M., Gachpazan, M., Beiglo, M.: Rationalized Haar wavelet bases to approximate solution of nonlinear Fredholm integral equations with error analysis. Appl. Math. Comput. 256, 304–312 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Panigrahi, B.L., Mandal, M., Nelakanti, G.: Legendre multi-Galerkin methods for fredholm integral equations with weakly singular kernel and the corresponding eigenvalue problem. J. Comput. Appl. Math. 346, 224–236 (2019)

    Article  MathSciNet  Google Scholar 

  13. Jafari, H., Jassim, H.K., Moshokoa, S.P., Ariyan, V.M., Tchier, F.: Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 8(4), 1–6 (2016). https://doi.org/10.1177/1687814016633013

    Article  Google Scholar 

  14. Sharma, V., Setia, A., Agarwal, R.P.: Numerical solution for system of Cauchy type singular integral equations with its error analysis in complex plane. Appl. Math. Comput. 328, 338–352 (2018)

    MathSciNet  Google Scholar 

  15. Erfanian, M., Zeidabadi, H.: Solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases, Asian-Eur. J. Math. (2019). https://doi.org/10.1142/S1793557119500554

  16. Erfanian, M.: The approximate solution of nonlinear integral equations with the RH wavelet bases in a complex plane. Int. J. Appl. Comput. Math 4(1), 31 (2018). https://doi.org/10.1007/s40819-017-0465-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Erfanian, M., Zeidabadi, H.: Approximate solution of linear Volterra integro-differential equation by using Cubic B-spline finite element method in the complex plane. Adv. Differ. Equ. 2019(1), 62 (2019). https://doi.org/10.1186/s13662-019-2012-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Erfanian, M.: The approximate solution of nonlinear mixed Volterra–Fredholm–Hammerstein integral equations with RH wavelet bases in a complex plane. Math. Methods Appl. Sci. 41(18), 8942–8952 (2018). https://doi.org/10.1002/mma.4714

    Article  MathSciNet  MATH  Google Scholar 

  19. Toutounian, F., Tohidi, E., Shateyi, S.: A collocation method based on the Bernoulli operational matrix for solving high-order linear complex differential equations in a rectangular domain. In: Abstract and Applied Analysis, Art. ID 823098 (2013)

  20. Reis, J.J., Lynch, R.T., Butman, J.: Adaptive Haar transform video bandwidth reduction system for RPVs. In: Proceedings of Annual Meeting of Society of Photo-Optic Institute of Engineering (SPIE), San Dieago, CA, pp. 24–35 (1976)

  21. Wojtaszczyk, P.: A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  22. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  23. Larson, D.R.: Unitary systems and wavelet sets. In: Wavelet Analysis and Applications, pp. 143–171. Applied and Numerical Harmonic Analysis, Birkhäuser (2007)

  24. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Erfanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erfanian, M., Akrami, A. & Parsamanesh, M. Solving Two-Dimensional Nonlinear Fredholm Integral Equations Using Rationalized Haar Functions in the Complex Plane. Int. J. Appl. Comput. Math 5, 47 (2019). https://doi.org/10.1007/s40819-019-0631-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0631-1

Keywords

Mathematics Subject Classification

Navigation