Skip to main content
Log in

Simulation of Forced Convection in a Channel Containing Three Obstacles over Backward and Forward Facing Steps by LBM

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study describes numerically forced convection laminar fluid flow simulation in a two dimensional channel containing three obstacles over backward and forward facing steps by using the lattice Boltzmann method (LBM). The LBM and the finite difference successive over relaxation method are simultaneously used to simulate the equations which govern the flow in terms of vorticity equation and energy equation. Heated fluid is impinged to flow in the channel while the solid surfaces of obstacles and channel are maintained at a lower constant temperature. The impacts on the temperature distribution and flow for changing Reynolds number are recapitulated for a fixed Prandtl number. Also, the impacts of Prandtl numbers on the flow and temperature distribution are discussed in this study. Two levels of Nusselt numbers, the local values and the mean values on the surfaces of the three obstacles, are emphasized to illustrate heat transfer rate from fluid. It is observed that 80% increase at heat transfer is noticed due to increase of Reynolds number of 100 within the range from 100 to 300. It is also observed that 60–30% increase at heat transfer is observed due to increase of Prandtl number of unity within the range from 0.71 to 13.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

x * :

Horizontal axis

y * :

Vertical axis

t * :

Time variable

u * :

Horizontal component of fluid velocity

v * :

Vertical component of fluid velocity

T * :

Temperature

p * :

Pressure

x :

Horizontal axis (non-dimensional)

y :

Vertical axis (non-dimensional)

t :

Time variable (non-dimensional)

u :

Fluid velocity vector (non-dimensional)

u :

Horizontal component of u

v :

Vertical component of u

T :

Temperature (non-dimensional)

p :

Pressure (non-dimensional)

H :

Channel height

U :

Reference velocity

L :

Channel length

∆t :

Time step

∆x :

Mesh size for x variable

∆y :

Mesh size for y variable

Nu :

Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

Nu m :

Mean Nusselt number

T in :

Maximum inlet temperature

T w :

Wall temperature

c k :

Lattice velocity vector

c k :

Lattice speed

c s :

Speed of sound

f k :

Distribution function for ω

g k :

Distribution function for T

f eq k :

Equilibrium distribution function for ω

g eq k :

Equilibrium distribution function for T

w k :

Weighting factor

α :

Thermal diffusion co-efficient

υ :

Kinematic viscosity

ρ :

Fluid density

ψ :

Stream function

ω :

Vorticity

τ f :

Relaxation factor for fk

τ g :

Relaxation factor for gk

References

  1. Mohamad, A.A., El-Ganaoui, M., Bennacer, R.: Lattice Boltzmann simulation of natural convection in an open ended cavity. Int. J. Therm. Sci. 48(10), 1870–1875 (2009)

    Article  Google Scholar 

  2. Saleel, C.A., Shaija, A., Jayaraj, S.: Numerical simulation of fluid flow over a forward–backward facing step using immersed boundary method. Int. J. Eng. Sci. Technol. 3(10), 7714–7729 (2011)

    MATH  Google Scholar 

  3. Young, T.J., Vafai, K.: Convective flow and heat transfer in a channel containing multiple heated obstacles. Int. J. Heat Mass Transf. 41(21), 3279–3298 (1998)

    Article  Google Scholar 

  4. Armaly, B.F., Durst, F., Pereira, J.C.F., Schönung, B.: Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech. 127(1), 473–496 (1983)

    Article  Google Scholar 

  5. Denhum, M.K., Patrick, M.A.: Laminar flow over a downstream-facing step in a two-dimensional flow channel. Trans. Inst. Chem. Eng. 52, 361–367 (1974)

    Google Scholar 

  6. Dennis, S., Smith, F.: Steady flow through a channel with a symmetrical constriction in the form of a step. Proc. R. Soc. A Math. Phys. Eng. Sci. 372(1750), 393–414 (1980)

    Article  MathSciNet  Google Scholar 

  7. Plotkin, A., Mei, R.: Navier–Stokes solutions for laminar incompressible flows in forward-facing step geometries. AIAA J. 24(7), 1106–1111 (1986)

    Article  Google Scholar 

  8. Ratish Kumar, B., Naidu, K.: A streamline upwinding stream function–vorticity finite element analysis of Navier–Stokes equations. Appl. Numer. Math. 13(4), 335–344 (1993)

    Article  MathSciNet  Google Scholar 

  9. Han, H., Lu, J., Bao, W.: A discrete artificial boundary condition for steady incompressible viscous flows in a no-slip channel using a fast iterative method. J. Comput. Phys. 114(2), 201–208 (1994)

    Article  MathSciNet  Google Scholar 

  10. Stuer, H., Gyr, A., Kinzelbach, W.: Laminar separation on a forward facing step. Eur. J. Mech. B Fluids 18(4), 675–692 (1999)

    Article  Google Scholar 

  11. Ravindran, S.: Control of flow separation over a forward-facing step by model reduction. Comput. Methods Appl. Mech. Eng. 191(41), 4599–4617 (2002)

    Article  MathSciNet  Google Scholar 

  12. Davalath, J., Bayazitoglu, Y.: Forced convection cooling across rectangular blocks. J. Heat Transf. 109(2), 321–328 (1987)

    Article  Google Scholar 

  13. Cheng, C.-H., Wen-Hsiung, H.: Numerical prediction for laminar forced convection in parallel-plate channels with transverse fin arrays. Int. J. Heat Mass Transf. 34(11), 2739–2749 (1991)

    Article  Google Scholar 

  14. Kim, W., Boehm, R.: Laminar buoyancy enhanced convection flows on repeated blocks with asymmetric heating. Numer. Heat Transf. Part A Appl. 22(4), 421–434 (1992)

    Article  Google Scholar 

  15. Kim, S.Y., Sung, H.J., Hyun, J.M.: Mixed convection from multiple-layered boards with cross-streamwise periodic boundary conditions. Int. J. Heat Mass Transf. 35(11), 2941–2952 (1992)

    Article  Google Scholar 

  16. Young, T.J., Vafai, K.: Convective cooling of a heated obstacle in a channel. Int. J. Heat Mass Transf. 41(20), 3131–3148 (1998)

    Article  Google Scholar 

  17. Meinders, E.R., Hanjalic, K.: Experimental study of the convective heat transfer from in-line and staggered configurations of two wall-mounted cubes. Int. J. Heat Mass Transf. 45(3), 465–482 (2002)

    Article  Google Scholar 

  18. Chandra, P., Alexander, C., Han, J.: Heat transfer and friction behaviors in rectangular channels with varying number of ribbed walls. Int. J. Heat Mass Transf. 46(3), 481–495 (2003)

    Article  Google Scholar 

  19. Korichi, A., Oufer, L.: Numerical heat transfer in a rectangular channel with mounted obstacles on upper and lower walls. Int. J. Therm. Sci. 44(7), 644–655 (2005)

    Article  Google Scholar 

  20. Lu, B., Jiang, P.: Experimental and numerical investigation of convection heat transfer in a rectangular channel with angled ribs. Exp. Therm. Fluid Sci. 30(6), 513–521 (2006)

    Article  Google Scholar 

  21. Leclerq, D.J.J., Jacob, M.C., Louisot, A., Talotte, C.: Forward–backward facing step pair—aerodynamic flow, wall pressure and acoustic characterisation. In: AIAA, No. 2249 (2001)

  22. Addad, Y., Laurence, D., Talotte, C., Jacob, M.C.: Large Eddy simulation of a forward–backward facing step for acoustic source identification. Int. J. Heat Fluid Flow 24(4), 562–571 (2003)

    Article  Google Scholar 

  23. Abu-Mulaweh, H.I.: Investigations on the effect of backward-facing and forward-facing steps on turbulent mixed-convection flow over a flat plate. Exp. Heat Transf. 22(2), 117–127 (2009)

    Article  Google Scholar 

  24. Mohammadi Pirouz, M., Farhadi, M., Sedighi, K., Nemati, H., Fattahi, E.: Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Sci. Iran. 18(2), 213–221 (2011)

    Article  Google Scholar 

  25. Alamyane, A.A., Mohamad, A.A.: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method. Comput. Math. Appl. 59(7), 2421–2430 (2010)

    Article  MathSciNet  Google Scholar 

  26. Al-Rashed, A.A.A., Murad, A.E., Ali Alnaqi, A., Hossain, A.: The mixed convection flow in a fluid-saturated non-Darcy porous medium through a horizontal channel. Res. J. Appl. Sci. Eng. Technol. 13(12), 895–906 (2013)

    Article  Google Scholar 

  27. Kheirandish, Z., Nassab, S.A.G., Vakilian, M.: Second law analysis of forced convective cooling in a channel with a heated wall mounted obstacle. J. Electron. Cool. Therm. Control. 3, 101–110 (2013)

    Article  Google Scholar 

  28. Chen, C.-K., Yen, T.-S., Yang, Y.-T.: Lattice Boltzmann method simulation of backward-facing step on convective heat transfer with field synergy principle. Int. J. Heat Mass Transf. 49(5–6), 1195–1204 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litan Kumar Saha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, S.K., Saha, L.K. & Anwar Hossain, M. Simulation of Forced Convection in a Channel Containing Three Obstacles over Backward and Forward Facing Steps by LBM. Int. J. Appl. Comput. Math 5, 35 (2019). https://doi.org/10.1007/s40819-019-0622-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0622-2

Keywords

Navigation