Skip to main content
Log in

Transient Flow in a Circular Cylinder Filled with Porous Material

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the problem of transient unidirectional flow in a circular porous medium is examined. The governing equation of fluid flow is modelled by employing the Darcy–Brinkman model. Using separation of variables technique, the analytical solution of modelled equation is established in the form of Bessel and modified Bessel functions. Moreover, the steady solution can be obtained as limiting case of the solution. Finally, the impact of relevant parameters on the transient velocity of fluid is also analyzed by the graphical and tabular illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

\( a \) :

Radius of cylinder

\( Br \) :

Brinkman number

\( Da \) :

Darcy number

\( Eu \) :

Euler number

\( G \) :

Negative applied pressure gradient \( \left( {{{ - \partial p} \mathord{\left/ {\vphantom {{ - \partial p} {\partial z}}} \right. \kern-0pt} {\partial z}}} \right) \)

\( I_{n} \left( r \right) \) :

Modified Bessel function of first kind of order n

\( J_{n} \left( r \right) \) :

Bessel function of first kind of order n

\( Y_{n} \left( r \right) \) :

Bessel function of second kind of order n

K :

Permeability

\( M \) :

Viscosity ratio parameter, \( {{\mu_{e} } \mathord{\left/ {\vphantom {{\mu_{e} } \mu }} \right. \kern-0pt} \mu } \)

p :

Pressure

r :

Radial coordinate in non-dimensional form

\( r' \) :

Radial coordinate

\( \text{Re} \) :

Reynolds number

\( s \) :

\( {1 \mathord{\left/ {\vphantom {1 {\sqrt {MDa} }}} \right. \kern-0pt} {\sqrt {MDa} }} \)

\( t \) :

Time

\( t' \) :

Non-dimensional time

\( U \) :

Non-dimensional fluid velocity in axial direction

\( \overline{U} \) :

Non-dimensional velocity defined in Eq. (6)

\( U^{*} \) :

Non-dimensional steady velocity in axial direction

\( U_{\hbox{max} } \) :

Non-dimensional maximum velocity in axial direction

\( U_{a} \) :

Non-dimensional average velocity in axial direction

\( u_{z}^{*} \) :

Characteristics velocity

\( u^{\prime}_{z} \) :

Fluid velocity in axial direction

\( u^{\prime}_{r} \) :

Fluid velocity in radial direction

\( u^{\prime}_{\theta } \) :

Fluid velocity in angular direction

\( z \) :

Dimensionless axial coordinate

\( z' \) :

Axial coordinate

\( \alpha_{n} \) :

Separation constant

\( \lambda_{n} \) :

Solution of Bessel function of first kind of zero order \( \left( {{{\alpha_{n} } \mathord{\left/ {\vphantom {{\alpha_{n} } {\sqrt M }}} \right. \kern-0pt} {\sqrt M }}} \right) \)

\( \mu \) :

Fluid viscosity

\( \mu_{e} \) :

Effective viscosity in Brinkman term

\( \rho \) :

Fluid density

\( \theta ' \) :

Angular coordinate

References

  1. Andersen, O.H., Burcharth, H.F.: On the one-dimensional steady and unsteady porous flow equation. Coast. Eng. 24, 233–257 (1995)

    Article  Google Scholar 

  2. Brinkman, H.C.: On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A1, 81–86 (1947)

    Google Scholar 

  3. DeGraaff, D.B., Webster, D.R., Eaton, J.K.: The effect of Reynolds number on boundary layer turbulence. Exp. Thermal Fluid Sci. 18, 341–346 (1999)

    Article  Google Scholar 

  4. Hayat, T., Khan, M., Ayub, M., Siddiqui, A.M.: The unsteady Couette flow of a second grade fluid in a layer of porous medium. Archives of Mechanics 57, 405–416 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Jha, B.K.: Free-convection flow through an annular porous medium. Heat Mass Transf. 41, 675–679 (2005)

    Article  Google Scholar 

  6. Kaur, J.P., Singh, G.D., Sharma, R.G.: Unsteady porous channel flow of a conducting fluid with suspended particles. Def. Sci. J. 38(1), 13–20 (1988)

    Article  Google Scholar 

  7. Kolodziej, J.A.: Influence of the porosity of a porous medium on the effective viscosity in Brinkman’s filtration Equation. Acta Mech. 75, 241–254 (1988)

    Article  Google Scholar 

  8. Lundgren, T.S.: Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51, 273–299 (1972)

    Article  Google Scholar 

  9. Mohammad, A.A.: Heat transfer enhancement in heat exchanger fitted with porous media. Part, I: constant wall temperature. Int. J. Therm. Sci. 42, 385–395 (2003)

    Article  Google Scholar 

  10. Ravi, S.K., Singh, A.K., Singh, R.K., Chamkha, A.J.: Transient free convective flow of a micro-polar fluid between two vertical walls. Int. J. Ind. Math. 5(2), 87–95 (2013)

    Google Scholar 

  11. Sahin, M.: Solution of the incompressible unsteady Navier-Stokes equations only in terms of the velocity components. Int. J. Comput. Fluid Dyn. 17(3), 199–203 (2003)

    Article  Google Scholar 

  12. Siddique, I., Al-Hossain, A.Y., Riaz, M.B.: Analytical solutions for unsteady flow problems of Maxwell fluid in a porous medium. Sci. Int. 27(2), 881–887 (2015)

    Google Scholar 

  13. Subramanya, K.: Theory and Applications of Fluid Mechanics, 11th edn. Tata McGraw-Hill, New Delhi (2003)

    Google Scholar 

  14. Wan Zaimi, W.M.K.A., Anuar, I., Pop, I.: Unsteady viscous flow over a shrinking cylinder. J. King Saud Univ. Sci. 25, 143–148 (2013)

    Article  Google Scholar 

  15. Yadav, S.L., Singh, A.K.: Effects of viscous and Darcy dissipations on entropy generation rate of flow through a horizontal porous channel. Int. J. Energy Technol. 6(17), 1–7 (2014)

    Google Scholar 

  16. Yadav, S.L., Singh, A.K.: Analysis of entropy generation in annular porous duct. Transp. Porous Media 111, 425–440 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author (SLY) would like to thank the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyam Lal Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.L., Singh, A.K. Transient Flow in a Circular Cylinder Filled with Porous Material. Int. J. Appl. Comput. Math 4, 145 (2018). https://doi.org/10.1007/s40819-018-0579-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0579-6

Keywords

Navigation