Skip to main content
Log in

On the First Exit Time of Geometric Brownian Motion from Stochastic Exponential Boundaries

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This article deals with the boundary crossing probability of a geometric Brownian motion (GBM) process when the boundary itself is a GBM process. An exact formula is obtained for the probability that the first exit time of \( S\left( t \right) \) from the stochastic interval \( \left[ {H_{1} \left( t \right),H_{2} \left( t \right)} \right] \) is greater than a finite time \( T \) using a partial differential equation approach. Applications and numerical results are provided. The possibility of an extension to higher dimension is also discussed. In particular, the steps to obtain the probability that \( S_{1} \left( t \right) \), \( S_{2} \left( t \right) \) and \( S_{3} \left( t \right) \) remain above \( S_{4} \left( t \right) \), \( \forall 0 \le t \le T \), are outlined, while pointing out that the entailed numerical issues make the relevance of an analytical approach questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, P.: Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris (1948)

    MATH  Google Scholar 

  2. Doob, J.L.: Heuristic approach to the Kolmogorov–Smirnov theorem. Ann. Math. Stat. 20, 393–403 (1949)

    Article  MathSciNet  Google Scholar 

  3. Anderson, T.W.: A modification of the sequential probability ratio test to reduce the sample size. Ann. Math. Stat. 31, 165–197 (1960)

    Article  MathSciNet  Google Scholar 

  4. Salminen, P.: On the first hitting time and last exit time for a Brownian motion to/from a moving boundary. Adv. Appl. Prob. 20, 411–426 (1988)

    Article  MathSciNet  Google Scholar 

  5. Groeneboom, P.: Brownian motion with a parabolic drift and airy Functions. Prob. Theory Rel. Fields 81, 79–109 (1989)

    Article  MathSciNet  Google Scholar 

  6. Novikov, A., Frishling, V., Kordzakhia, N.: Approximations of boundary crossing probabilities for a Brownian motion. J. Appl. Prob. 34, 1019–1030 (1999)

    Article  MathSciNet  Google Scholar 

  7. Breiman L.: First exit time from a square root boundary, Proc. 5th Berkeley Symp. Math. Statist. Prob., 2 (1966), 9-16

  8. Shepp, L.A.: A first passage problem for the Wiener process. Ann. Math. Stat. 38, 1912–1914 (1967)

    Article  MathSciNet  Google Scholar 

  9. Sato, S.: Evaluation of the first-passage time probability to a square root boundary for the Wiener process. J. Appl. Prob. 14, 850–856 (1977)

    Article  MathSciNet  Google Scholar 

  10. Guillaume, T.: On the computation of the survival probability of Brownian motion with drift in a closed time interval when the absorbing boundary is a step function. J. Prob. Stat. 2015, 22 (2015). (Article ID 391681)

  11. Guillaume, T.: Computation of the survival probability of Brownian motion with drift in a closed time interval when the absorbing boundary is an affine or an exponential function of time. Int. J. Stat. Prob. 5, 119–138 (2016)

    Article  Google Scholar 

  12. Scheike, T.H.: A boundary crossing result for Brownian motion. J. Appl. Prob. 29, 448–453 (1992)

    Article  MathSciNet  Google Scholar 

  13. Daniels, H.E.: Approximating the first crossing time density for a curved boundary. Bernoulli 2, 133–143 (1996)

    Article  MathSciNet  Google Scholar 

  14. Wang, L., Pötzelberger, K.: Boundary crossing probability for Brownian motion and general boundaries. J. Appl. Prob. 34, 54–65 (1997)

    Article  MathSciNet  Google Scholar 

  15. Wang, L., Pötzelberger, K.: Crossing probabilities for diffusion processes with piecewise continuous boundaries. Methodol. Comput. Appl. Prob. 9, 21–40 (2007)

    Article  MathSciNet  Google Scholar 

  16. Abundo, A.: Some conditional crossing results of Brownian motion over a piecewise-linear boundary. Stat. Prob. Lett. 58, 131–145 (2002)

    Article  MathSciNet  Google Scholar 

  17. Park, C., Beekman, J.A.: Stochastic barriers for the Wiener process. J. Appl. Prob. 20, 338–348 (1983)

    Article  MathSciNet  Google Scholar 

  18. Che, X., Dassios, A.: Stochastic boundary crossing probabilities for the Brownian motion. J. Appl. Prob. 50, 419–429 (2012)

    Article  MathSciNet  Google Scholar 

  19. Bielecki, T.R., Rutkowski, M.: Credit Risk: Modeling, Valuation and Hedging. Springer, Berlin (2004)

    Book  Google Scholar 

  20. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, New York (1979)

    MATH  Google Scholar 

  21. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus. Springer, New-York (1991)

    MATH  Google Scholar 

  22. Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. Chapman & Hall, Boca Raton (2004)

    Book  Google Scholar 

  23. He, H., Keirstead, W.P., Rebholz, J.: Double lookbacks. Math. Finance 8, 201–228 (1998)

    Article  MathSciNet  Google Scholar 

  24. Rebholz, J.: Planar diffusions with applications to mathematical finance. Ph.D. thesis, University of Berkeley (1994)

  25. Zhou, C.: An analysis of default correlations and multiple defaults. Rev. Financ. Stud. 14, 555–576 (2001)

    Article  Google Scholar 

  26. Kou, S., Zhong, H.: First passage times of two dimensional Brownian motion. Adv. Appl. Prob. 48, 1045–1060 (2016)

    Article  MathSciNet  Google Scholar 

  27. Duffy, D.G.: Green’s Functions with Applications. Chapman & Hall, Boca Raton (2001)

    Book  Google Scholar 

  28. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer, London (2009)

    Book  Google Scholar 

  29. Guillaume, T.: Step double barrier options. J. Deriv. 18, 59–79 (2010)

    Article  Google Scholar 

  30. Kunitomo, N., Ikeda, M.: Pricing options with curved boundaries. Math. Finance 2, 275–298 (1992)

    Article  Google Scholar 

  31. Kronrod, A.S.: Doklady Akad. Nauk SSSR 154, 283–286 (1964)

    MathSciNet  Google Scholar 

  32. Calvetti, D., Golub, G.H., Gragg, W.B., Reichel, L.: Computation of Gauss–Kronrod quadrature rules. Math. Comput. 69(2000), 1035–1052 (2000)

    Article  MathSciNet  Google Scholar 

  33. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press, Oxford (1959)

    MATH  Google Scholar 

  34. Guillaume, T.: On the multidimensional Black–Scholes partial differential equation. Ann. Oper. Res. https://doi.org/10.1007/s10479-018-3001-1

  35. Craig, I.J.D., Sneyd, A.D.: An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Comput. Math Appl. 16, 341–350 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for their comments and suggestions which contributed to improve the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Guillaume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillaume, T. On the First Exit Time of Geometric Brownian Motion from Stochastic Exponential Boundaries. Int. J. Appl. Comput. Math 4, 120 (2018). https://doi.org/10.1007/s40819-018-0556-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0556-0

Keywords

Navigation