Skip to main content
Log in

Soliton and Exact Solutions for the KdV–BBM Type Equations by tanh–coth and Transformed Rational Function Methods

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this work, we study the nonlinear partial differential equations such as KdV–BBM, mKdV–BBM, generalized KdV–BBM and potential KdV–BBM equations. We apply the tanh–coth and transformed rational function methods for these model equations to obtain soliton, kink, periodic, rational and travelling wave solutions with the help of Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Bangkok (1981)

    Book  MATH  Google Scholar 

  2. Bekir, A.: The tanh–coth method combined with the riccati equation for solving non-linear equation. Chaos Solitons Fractals 40(3), 1467–1474 (2009)

    Article  MATH  Google Scholar 

  3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R Soc. Lond. Ser. A Math. Phys. Sci. 272, 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bona, J.L., Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 278(1287), 555–601 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dutykh, D., Pelinovsky, E.: Numerical simulation of a solitonic gas in KDV and KDV–BBM equations. Phys. Lett. A 378, 3102–3110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. El-Kalaawy, O.H., Aldenari, R.: Painleve analysis, auto-backlund transformation and new exact solutions for improved modied KDV equation. Int. J. Appl. Math. Res. 3(3), 265–272 (2014)

    Article  Google Scholar 

  7. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277(4), 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, E., Zhang, H.: A note on the homogeneous balance method. Phys. Lett. A 246(5), 403–406 (1998)

    Article  MATH  Google Scholar 

  9. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirota, R.: The Direct Method in Soliton Theory, vol. 155. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  11. Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39(240), 422–443 (1895)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lakshmanan, M., Tamizhmani, K.: Painlevé analysis and integrability aspects of nonlinear evolution equations. In: Solitons, Springer, pp. 145–161 (1988)

  13. Liu, J., Zeng, Z.: Multiple soliton solutions, soliton-type solutions and rational solutions for the (\(3+1\))-dimensional potential-YTSF equation. Indian J. Pure Appl. Math. 45(6), 989–1002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, W.X., Fan, E.: Linear superposition principle applying to hirota bilinear equations. Comput. Math. Appl. 61(4), 950–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, W.X., Fuchssteiner, B.: Explicit and exact solutions to a Kolmogorov–Petrovskii–Piskunov equation. Int. J. Non Linear Mech. 31(3), 329–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the \(3+1\) dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42(3), 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60(7), 650–654 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malfliet, W., Hereman, W.: The tanh method: I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Malfliet, W., Hereman, W.: The tanh method: Ii. Perturbation technique for conservative systems. Phys. Scr. 54(6), 569 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mayil Vaganan, B., Asokan, R.: Direct similarity analysis of generalized burgers equations and perturbation solutions of Euler–Painlevé transcendents. Stud. Appl. Math. 111(4), 435–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Parkes, E., Duffy, B.: An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun. 98(3), 288–300 (1996)

    Article  MATH  Google Scholar 

  22. Russell, J.S.: Report on waves. In: 14th Meeting of the British Association for the Advancement of Science, vol. 311, p. 1844 (1844)

  23. Shingareva, I., Lizárraga-Celaya, C.: Solving Nonlinear Partial Differential Equations with Maple and Mathematica. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  24. Wazwaz, A.M.: The tanh–coth method for solitons and kink solutions for nonlinear parabolic equations. Appl. Math. Comput. 188(2), 1467–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.M.: The extended tanh method for new compact and noncompact solutions for the KP–BBM and the ZK–BBM equations. Chaos Solitons Fractals 38(5), 1505–1516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wazwaz, A.M.: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by hirotas method, tanh–coth method and exp-function method. Appl. Math. Comput. 202(1), 275–286 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Wazwaz, A.M.: The tanh–coth and the sine–cosine methods for kinks, solitons, and periodic solutions for the Pochhammer–Chree equations. Appl. Math. Comput. 195(1), 24–33 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, Berlin (2010)

    Google Scholar 

  29. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240 (1965)

    Article  MATH  Google Scholar 

  30. Zhang, S., Zhang, H.Q.: A transformed rational function method for (\(3+1\))-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Pramana 76(4), 561–571 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge University Grand Commission(Grand Number F.25-1/2013-14(BSR)5-66/2007) for providing financial support under—BSR(Basic Science Research) scheme. We would like to express our sincere thanks to Professor B. Mayil vaganan for his valuable suggestions and kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Asokan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asokan, R., Vinodh, D. Soliton and Exact Solutions for the KdV–BBM Type Equations by tanh–coth and Transformed Rational Function Methods. Int. J. Appl. Comput. Math 4, 100 (2018). https://doi.org/10.1007/s40819-018-0533-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-018-0533-7

Keywords

Navigation