Skip to main content
Log in

Numerical Study of Schrödinger Equation Using Differential Quadrature Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we have developed the quintic B-spline basis functions based differential quadrature method for the numerical solution of nonlinear Schrödinger equation. The numerical simulations such as motion of single solitary wave, interaction of two solitary waves, generation of solitary waves using the Maxwellian initial condition, birth of mobile soliton, bound state of solitons have been carried out and results are compared with the analytical solution and some published work. Conserved quantities are also computed numerically for all cases. The stability is discussed using matrix stability method. The scheme is found stable and provides very accurate results as compared to other numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellman, R., Kashef, B., Lee, E.S., Vasudevan, R.: Solving hard problems by easy methods: differential and integral quadrature. Comput. Math. Appl. 1(1), 133–143 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of non-linear partial differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  Google Scholar 

  4. Daǧ, İ.: A quadratic b-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174(1–2), 247–258 (1999)

    Google Scholar 

  5. Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    Article  MathSciNet  Google Scholar 

  6. Gardner, L.R.T., Gardner, G.A., Zaki, S.I., El Sahrawi, Z.: \(B\)-spline finite element studies of the nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 108(3–4), 303–318 (1993)

    Article  MATH  Google Scholar 

  7. Korkmarz, A., Daǧ, İ.: A differential quadrature algorithm for simulations of non-linear Schröninger equation. Comput. Math. Appl. 56(9), 2222–2234 (2008)

    Article  MathSciNet  Google Scholar 

  8. Korkmaz, A., Daǧ, İ.: A differential quadrature algorithm for nonlinear Schrödinger equation. Nonlinear Dyn. 56(1), 69–83 (2008)

    Google Scholar 

  9. Korkmaz, A., Daǧ, İ.: Polynomial based differential quadrature method for numerical solution of non-linear Burgers’ equation. J. Frankl. Inst. 348(10), 2863–2875 (2011)

    Article  MATH  Google Scholar 

  10. Korkmaz, A., Daǧ, İ.: Shock wave simulations using sinc differential quadrature method. Eng. Comput. 28(6), 654–674 (2011)

    Article  MATH  Google Scholar 

  11. Korkmaz, A., Daǧ, İ.: Cubic B-spline differential quadrature methods and stability for Burgers’ equation. Eng. Comput. 30(3), 320–344 (2013)

    Article  Google Scholar 

  12. Miles, J.W.: An envelope soliton problem. SIAM J. Appl. Math. 41(2), 227–230 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Min, L., Tao, X., Lei, W., Feng-Hua, Q.: Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrödinger equation. Appl. Math. Lett. 60, 0893–9659 (2016)

    MATH  Google Scholar 

  14. Mittal, R.C., Bhatia, R.: A numerical study of two dimensional hyperbolic telegraph equation by modified B-spline differential quadrature method. Appl. Math. Comput. 244, 976–997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mokhtari, R., Isvand, D., Chegini, N.G., Salaripanah, A.: Numerical solution of the Schrödinger equations by using delta-shaped basis functions. Nonlinear Dyn. 74(1), 77–93 (2013)

    Article  MATH  Google Scholar 

  16. Purohit, S.: Solutions of fractional partial differential equations of quantum mechanics. Adv. Appl. Math. Mech. 5(5), 639–651 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Purohit, S.D., Kalla, S.L.: On fractional partial differential equations related to quantum mechanics. J. Phys. A Math. Theor. 44(4), 045202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method-I. Comput. Chem. Eng. 13(7), 779–788 (1989)

    Article  Google Scholar 

  19. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method-II. Comput. Chem. Eng. 13(9), 1017–1024 (1989)

    Article  Google Scholar 

  20. Robinson, M.P.: The solution of nonlinear Schrödinger equations using orthogonal spline collocation. Comput. Math. Appl. 33(7), 39–57 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robinson, M.P., Fairweather, G.: Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68(3), 355–375 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61, 1443–1483 (1973)

    Article  MathSciNet  Google Scholar 

  23. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, London (2000)

    Book  MATH  Google Scholar 

  24. Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int J Numer Methods Fluids 53(6), 969–984 (2007)

    Article  MATH  Google Scholar 

  25. Shu, C., Xue, H.: Explicit computation of weighting coefficients in the the harmonic differential quadrature. J. Sound Vib. 204(3), 549–555 (1997)

    Article  Google Scholar 

  26. Taha, T.R., Ablowitz, M.J.: Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schrdinger equations. J. Comput. Phys. 55, 203–230 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tomasiello, S.: Numerical stability of DQ solutions of wave problems. Numer. Algorithms 57(3), 289–312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Ž. Èksper Teoret Fiz 61(1), 118–134 (1971)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author Rachna Bhatia is thankful to the National Board of Higher Mathematics, No. 2/40(57)/2015/R&D-II/4267 for financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, R., Mittal, R.C. Numerical Study of Schrödinger Equation Using Differential Quadrature Method. Int. J. Appl. Comput. Math 4, 36 (2018). https://doi.org/10.1007/s40819-017-0470-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0470-x

Keywords

Navigation