Skip to main content
Log in

Flow and Heat Transfer to a Newtonian Fluid Over Non-linear Extrusion Stretching Sheet

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper presents flow and energy transfer to a Newtonian fluid over non-linear extrusion stretching sheet problem involving a Newtonian fluid and suction (injection). Two different temperature conditions are studied, namely (i) prescribed surface temperature and (ii) prescribed wall heat flux, while considering heat transfer. Similarity transformation is used on the governing equations to arrive at a system of non-linear ordinary differential equations. A new analytical approach is then followed for solving the equation. Analytical expression is obtained for stream function and temperature in terms of the stretching parameters. The result in respect of the stretching sheet problem without the boundary layer approximation is obtained using those obtained with the boundary layer approximation. An asymptotic analysis is presented for large and small Prandtl numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C_{f}\) :

Skin friction coefficient

\(C_{p}\) :

Specific heat at constant pressure

\(C_{v}\) :

Specific heat at constant volume

F :

Kummer’s function

G :

Non-dimensional temperature (for the PHF case), (\(T - T_{\infty }) / (T_{w} - T_{\infty })\)

k :

Thermal conductivity

\(N_{\mathrm{I}}\) :

Heat source/sink parameter, \(Q^{*}/\alpha \,\rho \,C_p \)

\(p^{*}\) :

Hydrostatic pressure

P :

Hydromagnetic pressure

Pr :

Prandtl number, \(\mu \,C_p /k\)

\(Q^{*}\) :

Heat source (sink) coefficient

\(q_{w}\) :

Heat flux at the wall

T :

Liquid temperature

\(T_{\infty }\) :

Temperature at a large distance from the wall (sheet)

\(T_{w}\) :

Temperature at wall (sheet)

U :

Dimensionless horizontal velocity

u :

Dimensional horizontal velocity component

v:

Dimensional vertical velocity

\(\hbox {v}_{w}\) :

Dimensional suction/injection parameter

V :

Dimensionless vertical velocity

\(V_{w}\) :

Dimensionless suction/injection parameter, \(\hbox {v}_w /\sqrt{\alpha \nu }\)

X :

Dimensionless horizontal coordinate

x :

Horizontal coordinate

Y :

Dimensionless vertical coordinate

y :

Vertical coordinate

\(\alpha \) :

Linear stretching coefficient

\(\beta \) :

Non-linear stretching coefficient

\(\beta _T \) :

Constant power of the surface temperature

\(\delta \) :

Non-linear stretching coefficient

\(\delta ^{*}\) :

Dimensionless non-linear stretching parameter, \(\delta /2\alpha \)

\(\chi \) :

Thermal conductivity

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity, \(\mu /\rho \)

\(\psi \) :

Stream function

\(\rho \) :

Density

\(\varTheta \) :

Nondimensional temperature for the PST case, (\(T - T_{\infty })/(T_{w} - T_{\infty })\)

w :

Wall temperature

\(\infty \) :

Ambient temperature condition

*:

Dimensionless quantities

References

  1. Abel, M.S., Kumar, K.S., Prasad, K.V.: Study of viscoelastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int. J. Non-Linear Mech. 37, 81–88 (2002)

    Article  MATH  Google Scholar 

  2. Abramowitz, M., Stegun, F.: Handbook of Mathematical Functions. Dover, New York (1980)

    MATH  Google Scholar 

  3. Ali, M.E.: On the thermal boundary layer on a power-law stretched surface with suction or injection. Int. J. Heat Fluid Flow 16, 280–290 (1995)

    Article  Google Scholar 

  4. Ali, M., Al-Yousef, F.: Laminar mixed convection from a continuously moving vertical surface with suction or injection. Heat Mass Transf. 33, 301–306 (1998)

    Article  Google Scholar 

  5. Andersson, H.I.: An exact solution of the Navier–Stokes equations for MHD flow. Acta Mech. 113, 241–244 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Andersson, H.I.: Slip flow past a stretching surface. Acta Mech. 158, 121–125 (2002)

    Article  MATH  Google Scholar 

  7. Andrews, L.C.: Special Functions of Mathematics for Engineers, 2nd edn. McGraw Hill, New York (1992)

    Google Scholar 

  8. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw Hill, New York (1978)

    MATH  Google Scholar 

  9. Brighi, B., Sari, T.: Blowing-up coordinates for a similarity boundary layer equation. Discrete Contin. Dyn. Syst. 12, 929–948 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crane, L.J.: Flow past a stretching plate. J. Appl. Math. Phys. (ZAMP) 21, 645–647 (1970)

    Article  Google Scholar 

  11. Elbashbeshy, E.M.A.: Heat transfer over a stretching surface with variable surface heat flux. J. Phys. D: Appl. Phys. 31, 1951–1954 (1998)

    Article  Google Scholar 

  12. Fisher, E.G.: Extrusion of Plastics, 3rd edn. Newnes-Butterworld, London (1976)

    Google Scholar 

  13. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  14. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous, stretching surface with variable temperature. ASME J. Heat Transf. 107, 248–250 (1995)

    Article  Google Scholar 

  15. Kelly, D., Vajravelu, K., Andrews, L.: Analysis of heat and mass transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet. Nonlinear Anal. 36, 767–784 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelson, N.A.: Note on similarity solutions for viscous flow over an impermeable and non-linearly (quadratic) stretching sheet. Int. J. Non-linear Mech. 46, 1090–1091 (2011)

    Article  Google Scholar 

  17. Khan, S.K., Sanjayanand, E.: Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet. Int. J. Heat Mass Transf. 48, 1534–1542 (2005)

    Article  MATH  Google Scholar 

  18. Khan, S.K.: Boundary layer viscoelastic fluid flow over an exponentially stretching sheet. Int. J. Appl. Mech. Eng. 11, 321–335 (2006)

    MATH  Google Scholar 

  19. Kumaran, V., Ramanaiah, G.: A note on the flow over a stretching sheet. Acta Mech. 116, 229–233 (1996)

    Article  MATH  Google Scholar 

  20. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, New York (2004)

    MATH  Google Scholar 

  21. Liao, S.J., Pop, I.: Explicit analytic solution for similarity boundary layer equations. Int. J. Heat Mass Transf. 47, 75–85 (2004)

    Article  MATH  Google Scholar 

  22. Magyari, E., Pop, I., Keller, B.: New analytical solutions of a well-known boundary value problem in fluid mechanics. Fluid Dyn. Res. 33, 313–317 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahesha, N.: Solutions of Some Boundary Value Problems Arising in the Flow, Heat and Mass Transfer Due to a Linear/Non-linear Stretching Surface, Ph.D. Thesis, Gulbarga University (India) (2010)

  24. Mahabaleshwar, U.S.: Effect of partial slip viscous flow over a stretching sheet with suction/injection in a porous medium. In: Zhao, C. (ed.) Porous Media, pp. 165–179. NOVA Science Publishers Inc, New York (2016)

    Google Scholar 

  25. Mahabaleshwar, U.S., Nagaraju, K.R., Vinay Kumar, P.N., Baleanu, D., Lorenzini, G.: An exact analytical solution of the unsteady magnetohydrodynamics nonlinear dynamics of laminar boundary layer due to an impulsively linear stretching sheet. Continu. Mech. Thermodyn. 29(2), 559–567 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces I: the boundary layer on a equations for two dimensional and axisymmetric flow. J. Am. Inst. Chem. Eng. 7, 26–28 (1961)

    Article  Google Scholar 

  27. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces II: the boundary layer on a continuous flat surface. J. Am. Inst. Chem. Eng. 7, 221–225 (1961)

    Article  Google Scholar 

  28. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces III: the boundary layer on a continuous cylindrical surface. J. Am. Inst. Chem. Eng. 7, 467–472 (1961)

    Article  Google Scholar 

  29. Sanjayanand, E., Khan, S.K.: On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet. Int. J. Therm. Sci. 45, 819–828 (2006)

    Article  Google Scholar 

  30. Siddheshwar, P.G., Mahabaleshwar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 40, 807–820 (2005)

    Article  MATH  Google Scholar 

  31. Tsou, F.K., Sparrow, E.M., Goldstein, R.J.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transf. 10, 219–223 (1967)

    Article  Google Scholar 

  32. Wang, C.Y.: Darcy–Brinkman flow with solid inclusions. Chem. Eng. Comm. 197, 261–274 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Mahabaleshwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddheshwar, P.G., Mahabaleshwar, U.S. Flow and Heat Transfer to a Newtonian Fluid Over Non-linear Extrusion Stretching Sheet. Int. J. Appl. Comput. Math 4, 35 (2018). https://doi.org/10.1007/s40819-017-0466-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-017-0466-6

Keywords

Navigation