Skip to main content
Log in

Generalized Trigonometric Functions and Matrix Parameterization

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The generalized trigonometric functions (GTF) have been introduced using an appropriate redefinition of Euler type identities involving non-standard forms of imaginary numbers, realized by different types of matrices. In this paper we use the GTF to get parameterization of practical interest for non-singular matrices. The possibility of using this procedure to deal with applications in electron transport is also touched on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11, 81 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Yamaleev, R.M.: Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics. Adv. Appl. Clifford Algebras 15(1), 123–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babusci, D., Dattoli, G., Di Palma, E., Sabia, E.: Complex-type numbers and generalizations of the Euler identity. Adv. Appl. Clifford Algebras 22(2), 271–281 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Yamaleev, R.M.: Hyperbolic cosines and sines theorems for the triangle formed by arcs of intersecting semicircles on Euclidean plane. J. Math. Article ID 920528 (2013)

  5. Dattoli, G., Di Palma, E., Nguyen, F., Sabia, E.: Generalized trigonometric functions and elementary application. Int. J. Appl. Comput. Math. (2016). doi:10.1007/s40819-016-0168-5

    Google Scholar 

  6. Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra, 3rd edn. Macmillan, London (1965)

    MATH  Google Scholar 

  7. Steffen, K.: Fundamentals of accelerator optics. In: Turner, S. (ed.) Synchrotron Radiation and Free Electron Lasers. CERN Accelerator School, April 1989 (1990)

  8. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). See Section 6.1

    Book  MATH  Google Scholar 

  9. Jansen, J.: Rotations in three four and five dimensions. arXiv:1103.5263v1 [math.MG]

  10. Vajda, S.: Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications. Halsted Press, New York, pp. 9–10, 18–20 (1989)

  11. Ferrari, E.: Bollettino UMI 18B, 933 (1981). For early suggestions see also F.D. Bugogne, Math. Comput. 18, 314 (1964)

  12. Ricci, P.E.: Le funzioni Pseudo Iperboliche e Pseudo Trigonometriche. Pubblicazioni dell?Istituto di Matematica Applicata, N 192 (1978)

  13. Cheick, Y.B.: Decomposition of Laguerre polynomials with respect to the cyclic group. J. Comput. Appl. Math. 99, 55–66 (1998)

    Article  MathSciNet  Google Scholar 

  14. Ansari, A.H., Liu, X., Mishra, V.N.: On Mittag–Leffler function and beyond. Nonlinear Sci. Lett. A 8(2), 187–199 (2017)

    Google Scholar 

  15. Nieto, M.M., Rodney Truax, D.: Arbitrary-order Hermite generating functions for obtaining arbitrary-order coherent and squeezed states. Phys. Lett. A 208, 8–16 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sun, J., Wang, J., Wang, C.: Orthonormalized eigenstates of cubic and higher powers of the annihilation operator. Phys. Rev. 44A, 3369 (1991)

    Article  MathSciNet  Google Scholar 

  17. Dattoli, G., Renieri, A., Torre, A.: Lectures on Free Electron Laser Theory and Related Topics. World Scientific, Singapore (1993)

    Book  Google Scholar 

  18. Dattoli, G., Migliorati, M., Ricci, P.E.: The Eisentein group and the pseudo hyperbolic function. arXiv:1010.1676 [math-ph] (2010)

  19. Dattoli, G., Sabia, E., Del Franco, M.: The pseudo-hyperbolic functions and the matrix representation of Eisenstein complex numbers. arXiv:1003.2698v1 [math-ph]

  20. Qin, H., Davidson, R.: Courant-Snyder theory for coupled transverse dynamics of charged particles in electromagnetic focusing lattices. Phys. Rev. Spec. Top. Accel. Beams (2009). doi:10.1103/PhysRevSTAB.12.064001

  21. Baumgarten, C.: PRSTAB, Use of real Dirac matrices in two-dimensional coupled linear optics

  22. Majorana, E.: Nuovo Cimento 14, 171 (1937)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere appreciation to Prof. Robert Yamaleev for interesting and enlightening discussion on the generalized trigonometric functions, the relevant algebraic foundations and applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Licciardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dattoli, G., Licciardi, S. & Sabia, E. Generalized Trigonometric Functions and Matrix Parameterization. Int. J. Appl. Comput. Math 3 (Suppl 1), 115–128 (2017). https://doi.org/10.1007/s40819-017-0427-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0427-0

Keywords

Navigation