Skip to main content
Log in

Periodic Solution for Strongly Nonlinear Oscillators by He’s New Amplitude–Frequency Relationship

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper applies He’s new amplitude–frequency relationship recently established by He (Int J Appl Comput Math 3(2):1557–1560, 2017. doi:10.1007/s40819-016-0160-0) to study periodic solutions of strongly nonlinear systems with odd nonlinearities. Some examples are given to illustrate the effectiveness, ease and convenience of the method. In general, the results are valid for small as well as large oscillation amplitude. The method can be easily extended to other nonlinear systems with odd nonlinearities and can therefore be found widely applicable in engineering and other science. The method used in this paper can be applied directly to highly nonlinear problems without any discretization, linearization or additional requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acton, J.R., Squire, P.T.: Solving Equations with Physical Understanding. Adam Hilger Ltd, Bristol (1985)

    Google Scholar 

  2. Beléndez, A., Hernández, A., Beléndez, T., Fernández, E., Álvarez, M.L., Neipp, C.: Application of He’s homotopy perturbation method to the Duffing harmonic oscillator. Int. J. Nonlinear Sci. Numer. Simul. 8(1), 79–88 (2007). doi:10.1515/IJNSNS.2007.8.1.79

    Article  MATH  Google Scholar 

  3. Beléndez, A., Pascual, C.: Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator. Phys. Lett. A 371(4), 291–299 (2007). doi:10.1016/j.physleta.2007.09.010

    Article  Google Scholar 

  4. Beléndez, A., Pascual, C., Gallego, S., Ortuño, M., Neipp, C.: Application of a modified He’s homotopy perturbation method to obtain higher-order approximations of a \(x^{1/3}\) force nonlinear oscillator. Phys. Lett. A 371(5–6), 421–426 (2007). doi:10.1016/j.physleta.2007.06.042

    Article  MATH  Google Scholar 

  5. Cai, X.C., Liu, J.F.: Application of the modified frequency formulation to a nonlinear oscillator. Comput. Math. Appl. 61(8), 2237–2240 (2011). doi:10.1016/j.camwa.2010.09.025

    Article  MATH  MathSciNet  Google Scholar 

  6. Elías-Zúñiga, A.: Exact solution of the cubic–quintic Duffing oscillator. Appl. Math. Model. 37(4), 2574–2579 (2013). doi:10.1016/j.apm.2012.04.005

    Article  MATH  MathSciNet  Google Scholar 

  7. Elías-Zúñiga, A.: Solution of the damped cubic–quintic Duffing oscillator by using Jacobi elliptic functions. Appl. Math. Comput. 246, 474–481 (2014). doi:10.1016/j.amc.2014.07.110

    MATH  MathSciNet  Google Scholar 

  8. Ganji, S.S., Ganji, D.D., Ganji, Z.Z., Karimpour, S.: Periodic solution for strongly nonlinear vibration systems by He’s energy balance method. Acta Appl. Math. 106(1), 79–92 (2009). doi:10.1007/s10440-008-9283-6

    Article  MATH  MathSciNet  Google Scholar 

  9. Ganji, D.D., Sadighi, A.: Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction–diffusion equations. Int. J. Nonlinear Sci. Numer. Simul. 7(4), 411–418 (2006). doi:10.1515/IJNSNS.2006.7.4.411

    Article  Google Scholar 

  10. González-Gaxiola, O., Santiago, J.A., de Chávez, J.Ruiz: Solution for the nonlinear relativistic harmonic oscillator via Laplace–Adomian decomposition method. Int. J. Appl. Comput. Math. 3(3), 2627–2638 (2017). doi:10.1007/s40819-016-0267-3

    Article  MathSciNet  Google Scholar 

  11. Gorji, M., Ganji, D.D., Soleimani, S.: New application of He’s homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 8(3), 319–328 (2007). doi:10.1515/IJNSNS.2007.8.3.319

    Article  Google Scholar 

  12. He, J.H.: Amplitude–frequency relationship for conservative nonlinear oscillators with odd nonlinearities. Int. J. Appl. Comput. Math. 3(2), 1557–1560 (2017). doi:10.1007/s40819-016-0160-0

    Article  MathSciNet  Google Scholar 

  13. He, J.H.: Hamiltonian approach to nonlinear oscillators. Phys. Lett. A 374(23), 2312–2314 (2010). doi:10.1016/j.physleta.2010.03.064

    Article  MATH  MathSciNet  Google Scholar 

  14. He, J.H.: Max–min approach to nonlinear oscillators. Int. J. Nonlinear Sci. Numer. Simul. 9(2), 207–210 (2008). doi:10.1515/IJNSNS.2008.9.2.207

    Google Scholar 

  15. He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fractals 34(5), 1430–1439 (2007). doi:10.1016/j.chaos.2006.10.026

    Article  MATH  MathSciNet  Google Scholar 

  16. He, J.H.: Variational iteration method a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 34(4), 699–708 (1999). doi:10.1016/S0020-7462(98)00048-1

    Article  MATH  MathSciNet  Google Scholar 

  17. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1–2), 87–88 (2006). doi:10.1016/j.physleta.2005.10.005

    Article  MATH  MathSciNet  Google Scholar 

  18. He, J.H.: Homotopy perturbation method for bifurcation on nonlinear problems. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 207–208 (2005). doi:10.1515/IJNSNS.2005.6.2.207

    MathSciNet  Google Scholar 

  19. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004). doi:10.1016/S0096-3003(03)00341-2

    MATH  MathSciNet  Google Scholar 

  20. He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006). doi:10.1142/S0217979206033796

    Article  MATH  MathSciNet  Google Scholar 

  21. He, J.H., Wu, X.H.: Construction of solitary solution and compact on-like solution by variational iteration method. Chaos Solitons Fractals 29(1), 108–113 (2006). doi:10.1016/j.chaos.2005.10.100

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu, H., Tang, J.H.: Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vib. 294(3), 637–639 (2006). doi:10.1016/j.jsv.2005.12.025

    Article  MATH  MathSciNet  Google Scholar 

  23. Khan, Y., Mirzabeigy, A.: Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator. Neural Comput. Appl. 25(3), 889–895 (2014). doi:10.1007/s00521-014-1576-2

    Article  Google Scholar 

  24. Lan, X.: A Hamiltonian approach for a plasma physics problem. Comput. Math. Appl. 61(8), 1909–1911 (2011). doi:10.1016/j.camwa.2010.06.028

    Article  MATH  Google Scholar 

  25. Liao, S.J., Chwang, A.T.: Application of homotopy analysis method in nonlinear oscillations. J. Appl. Mech. 65(4), 914–922 (1998). doi:10.1115/1.2791935

    Article  MathSciNet  Google Scholar 

  26. Marin, M.: On weak solutions in elasticity of dipolar bodies with voids. J. Comput. Appl. Math. 82(1–2), 291–297 (1997). doi:10.1016/S0377-0427(97)00047-2

    Article  MATH  MathSciNet  Google Scholar 

  27. Marin, M.: Harmonic vibrations in thermoelasticity of microstretch materials. J. Vib. Acoust. ASME 132(4), 044501-1 (2010). doi:10.1115/1.4000971

    Article  Google Scholar 

  28. Mickens, R.E.: Oscillations in Planar Dynamics Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  29. Mickens, R.E.: Harmonic balance and iteration calculations of periodic solutions to \(y^{\prime \prime }+y^{-1}=0\). J. Sound Vib. 306, 968–972 (2007). doi:10.1016/j.jsv.2007.06.010

    Article  MathSciNet  Google Scholar 

  30. Mohyud-Din, S.T., Noor, M.A., Noor, K.I.: Parameter-expansion techniques for strongly nonlinear oscillators. Int. J. Nonlinear Sci. Numer. 10(5), 581–583 (2009). doi:10.1515/IJNSNS.2009.10.5.581

    MATH  Google Scholar 

  31. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York (1985)

    MATH  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  33. Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305(4–5), 614–620 (2007). doi:10.1016/j.jsv.2007.04.020

    Article  MATH  MathSciNet  Google Scholar 

  34. Sharma, K., Marin, M.: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. U. P. B. Sci. Bull. Ser. A 75(2), 121–132 (2013)

    MATH  MathSciNet  Google Scholar 

  35. Wazwaz, A.M.: The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations. Comput. Math. Appl. 54(7–8), 933–939 (2007). doi:10.1016/j.camwa.2006.12.039

    Article  MATH  MathSciNet  Google Scholar 

  36. Yildirim, A., Askari, H., Saadatnia, Z., Kalami-Yazdi, M., Khand, Y.: Analysis of nonlinear oscillations of a punctual charge in the electric field of a charged ring via a Hamiltonian approach and the energy balance method. Comput. Math. Appl. 62(1), 486–490 (2011). doi:10.1016/j.camwa.2011.05.029

    Article  MATH  MathSciNet  Google Scholar 

  37. Yildirim, A., Saadatnia, Z., Askari, H.: Application of the Hamiltonian approach to nonlinear oscillators with rational and irrational elastic terms. Math. Comput. Model. 54(1–2), 697–703 (2011). doi:10.1016/j.mcm.2011.03.012

    Article  MATH  MathSciNet  Google Scholar 

  38. Younesian, D., Askari, H., Saadatnia, Z., KalamiYazdi, M.: Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method. Comput. Math. Appl. 59(9), 3222–3228 (2010). doi:10.1016/j.camwa.2010.03.013

    Article  MATH  MathSciNet  Google Scholar 

  39. Zeng, D.Q.: Nonlinear oscillator with discontinuity by the max–min approach. Chaos Solitons Fractals 42(15), 2885–2889 (2009). doi:10.1016/j.chaos.2009.04.029

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their constructive comments and suggestions that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. González-Gaxiola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Gaxiola, O. Periodic Solution for Strongly Nonlinear Oscillators by He’s New Amplitude–Frequency Relationship. Int. J. Appl. Comput. Math 3 (Suppl 1), 1249–1259 (2017). https://doi.org/10.1007/s40819-017-0414-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-017-0414-5

Keywords

Mathematics Subject Classification

Navigation