Skip to main content
Log in

Free Convection Heat and Mass Transfer Flow for Magnetohydrodynamic Chemically Reacting and Radiating Elastico-Viscous Fluid Past a Vertical Permeable Plate with Gravity Modulation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

An analysis of a two-dimensional unsteady magnetohydrodynamic free convective heat and mass transfer flow of an electrically conducting, optically thin, incompressible, and radiating elastico-viscous fluid (characterised by Walters’ liquid \({B}'\)) past a vertical permeable infinite plate embedded in a uniform porous medium with gravity modulation is considered. It is assumed that there exists a homogeneous first-order chemical reaction. Analytical solutions for velocity, temperature and concentration field have been derived. The effects of gravity modulation, radiation, and chemical reaction on velocity profile and shear stress for both Newtonian and elastico-viscous fluid have been studied and presented graphically. It was observed that velocity distribution increases with an increase in gravity modulation parameter and radiation parameter for both Newtonian and elastico-viscous fluid, where as it shows reverse effects in the case of magnetic field parameter and viscoelastic parameter. It is seen that viscous drag on the plate is reduced under the effect of chemical reaction parameter, where as it shows reverse effect in the case of gravity modulation parameter and radiation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

a :

Gravity modulation parameter

\(\overline{{C}}\) :

Species concentration

\(\overline{{C}}_\infty \) :

Species concentration in the free stream

\(\overline{{C}}_w \) :

Species concentration near the surface

\(C_p \) :

Specific heat at constant pressure

D :

Chemical molecular diffusivity

g :

Acceleration due to gravity

\(g_0 \) :

Constant gravity level in the space

\(g_1 \) :

Amplitude of the oscillating component of acceleration

Gr :

Grashof number for heat transfer

Gm :

Grashof number for mass transfer

\(K_r \) :

Dimensionless chemical reaction parameter

K :

Dimensionless porous permeability parameter

\(k_0 \) :

Co-efficient of elastic viscosity

M :

Magnetic parameter

Nu :

Nusselt number

\(\Pr \) :

Prandtl number

\(q_r \) :

Radiation heat flux

R :

Radiation parameter

Sc :

Schmidt number

Sh :

Sherwood number

T :

Fluid temperature

\(\overline{{T}}_w \) :

Fluid temperature at the surface

\(\overline{{T}}_\infty \) :

Fluid temperature in the free stream

\(\overline{{u}},\overline{{v}}\) :

Velocity components along x and y-axis respectively

U :

Scale of surface velocity

\(v_0 \) :

Suction velocity

\(\overline{{x}},\overline{{y}}\) :

Cartesian coordinates

\(\alpha \) :

Viscoelastic parameter

\(\beta \) :

Coefficient of volume expansion for heat transfer

\(\overline{{\beta }}\) :

Coefficient of volume expansion for mass transfer

\(\omega \) :

Dimensionless frequency of oscillation

\(\varepsilon \) :

Positive small parameter

\(\theta \) :

Dimensionless fluid temperature

\(\kappa \) :

Thermal conductivity

\(\upsilon \) :

Kinematic viscosity

\(\rho \) :

Fluid density

\(\sigma _1 \) :

Electrical conductivity

\(\overline{{\sigma }}\) :

Stefan–Boltzmann constant

\(\sigma \) :

Dimensionless shear stress

\(\phi \) :

Dimensionless species concentration

w :

Conditions on the surface

\(\infty \) :

Free stream conditions

References

  1. Nield, D., Bejan, A.: Convection in Porous Media. Springer, New York (1999)

    Book  MATH  Google Scholar 

  2. Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon Press, Oxford (2001)

    Google Scholar 

  3. Siegel, R., Howell, J.R.: Thermal Radiation Transfer, 3rd edn. Hemisphere, New York (1992)

    Google Scholar 

  4. Modest, M.F.: Radiative Heat Transfer, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  5. Murthy, P.V.S.N., Mukherjee, S., Srinivasacharya, D., Krishna, P.V.S.S.S.R.: Combined radiation and mixed convection from a vertical wall with suction/injection in a non-darcy porous medium. Acta Mech. 168, 145–156 (2004)

    Article  MATH  Google Scholar 

  6. Abel, S., Prasad, K.V., Mahaboob, A.: Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface. Int. J. Therm. Sci. 44, 465–476 (2005)

    Article  Google Scholar 

  7. Mahmoud, M.A.A., Mahmoud, M.A., Waheed, S.E.: Hydromagnetic boundary layer micropolar fluid flow over a stretching surface embedded in a non-darcian porous medium with radiation. Math. Probl. Eng. 39392, 1–10 (2006)

    MathSciNet  Google Scholar 

  8. Krishnambal, S., Anuradha, P.: Effect of radiation on the flow of a visco-elastic fluid and heat transfer in a porous medium over a stretching sheet. J. Appl. Sci. 6, 2901–2906 (2006)

    Article  Google Scholar 

  9. Abel, M.S., Mahesha, N.: Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, nonuniform heat source and radiation. Appl. Math. Model. 32, 1965–1983 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kar, M., Sahoo, S.N., Rath, P.K., Dash, G.C.: Heat and mass transfer effects on a dissipative and radiative visco-elastic MHD flow over a stretching porous sheet. Arab J. Sci. Eng. 39, 3393–3401 (2014)

    Article  MathSciNet  Google Scholar 

  11. Makinde, O.D.: Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. Int. Commun. Heat Mass Transf. 32, 1411–1419 (2005)

    Article  Google Scholar 

  12. Takhar, H.S., Reddy Gorla, R.S., Soundalgekar, V.M.: Short communication radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate. Int. J. Numer. Methods Heat Fluid Flow 6, 77–83 (1996)

    Article  MATH  Google Scholar 

  13. Raji Reddy, S., Srihari, K.: Numerical solution of unsteady flow of a radiating and chemically reacting fluid with time-dependent suction. Indian J. Pure Appl. Phys. 47, 7–11 (2009)

    Google Scholar 

  14. Ibrahim, S.Y., Makinde, O.D.: Radiation effect on chemically reacting MHD boundary layer flow of heat and mass transfer past a porous vertical flat plate. Int. J. Phys. Sci. 6(6), 1508–1516 (2011)

    Google Scholar 

  15. Makinde, O.D.: Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica 47, 1173–1184 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Makinde, O.D.: Chemically reaction hydromagnetic unsteady flow of a radiating fluid past a vertical plate with constant heat flux. Zeitschrift fur Naturforschung 67a, 239–247 (2012)

    Google Scholar 

  17. Nandkeolyar, R., Seth, G.S., Makinde, O.D., Sibanda, P., Ansari, M.S.: Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation. ASME J. Appl. Mech. 80, 1–9 (2013)

    Article  Google Scholar 

  18. Reddy, M.G.: Unsteady heat and mass transfer MHD flow of a chemically reacting fluid past an impulsively started vertical plate with radiation. J. Eng. Phys. Thermophys. 87(5), 1233–1240 (2014)

    Article  Google Scholar 

  19. Reddy, M.G.: Thermal radiation and chemical reaction effects on MHD mixed convective boundary layer slip flow in a porous medium with heat source and Ohmic heating. Eur. Phys. J. Plus 129, 41 (2014)

    Article  Google Scholar 

  20. Reddy, M.G.: Unsteady radiative convective boundary layer flow of a casson fluid with variable thermal conductivity. J. Eng. Phys. Thermophys. 88(1), 240–251 (2015)

    Article  Google Scholar 

  21. Adesanya, S.O., Oluwadare, E.O., Falade, J.A., Makinde, O.D.: Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions. J. Magn. Magn. Mater. 396, 295–303 (2015)

    Article  Google Scholar 

  22. Mohyud-Din, S.T., Khan, U., Ahmed, N., Sikandar, W.: A study of velocity and temperature slip effects on flow of water based nanofluids in converging and diverging channels. Int. J. Appl. Comput. Math. 1, 569–587 (2015)

    Article  MathSciNet  Google Scholar 

  23. Khan, U., Sikandar, W., Ahmed, N., Mohyud-Din, S.T.: Effects of velocity slip on MHD flow of a non-Newtonian fluid in converging and diverging channels. Int. J. Appl. Comput. Math. 5, 1–23 (2015). doi:10.1007/s40819-015-0071-5

    Google Scholar 

  24. Khan, U., Ahmed, N., Mohyud-Din, S.T.: Stoke’s first problem for carbon nanotubes suspended nanofluid flow under the effect of slip boundary condition. J. Nanofluids 5, 1–6 (2016)

    Article  Google Scholar 

  25. Mohyud-Din, S.T., Zaidi, Z.A., Khan, U., Ahmed, N.: On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp. Sci. Technol. 46, 514–522 (2015)

    Article  Google Scholar 

  26. Prasad, K.V., Abel, S., Datti, P.S.: Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. Int. J. Nonlinear Mech. 38, 651–657 (2003)

    Article  MATH  Google Scholar 

  27. Akyildiz, F.T., Bellout, H., Vajravelu, K.: Diffusion of chemically reactive species in a porous medium over a stretching sheet. J. Math. Anal. Appl. 320, 322–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cortell, R.: MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem. Eng. Process. 46, 721–728 (2007)

    Article  Google Scholar 

  29. Ibrahim, F.S., Hady, F.M., Abdel-gaied, S.M., Eid, M.R.: Influence of chemical reaction on heat and mass transfer of non-Newtonian fluid with yield stress by free convection from vertical surface in porous medium considering Soret effect. Appl. Math. Mech. 31(6), 675–684 (2010)

    Article  MATH  Google Scholar 

  30. Damseh, R.A., Shannak, B.A.: Visco-elastic fluid flow past an infinite vertical porous plate in the presence of first order chemical reaction. Appl. Math. Mech. 31, 955–962 (2010)

    Article  MATH  Google Scholar 

  31. Nayak, A., Dash, G.C., Panda, S.: Unsteady MHD flow of a visco-elastic fluid along vertical porous surface with chemical reaction. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 83(2), 153–161 (2013)

    Article  MathSciNet  Google Scholar 

  32. Das, K.: Influence of chemical reaction and viscous dissipation on MHD mixed convection flow. J. Mech. Sci. Technol. 28(5), 1881–1885 (2014)

    Article  Google Scholar 

  33. Clever, R., Schubert, G., Busse, F.H.: Two-dimensional oscillatory convection in a gravitationally modulated fluid layer. J. Fluid Mech. 253, 663–680 (1993)

    Article  MATH  Google Scholar 

  34. Clever, R., Schubert, G., Busse, F.H.: Three-dimensional oscillatory convection in a gravitational modulated fluid layer. Phys. Fluids A 5(10), 2430–2437 (1992)

    Article  MATH  Google Scholar 

  35. Fu, W.S., Shieh, W.J.: A study of thermal convection in an enclosure induced simultaneously by gravity and vibration. Int. J. Heat Mass Transf. 35(7), 1695–1710 (1992)

    Article  Google Scholar 

  36. Li, B.Q.: The effect of magnetic fields on low frequency oscillating natural convection. Int. J. Eng. Sci. 34(12), 1369–1383 (1996)

    Article  MATH  Google Scholar 

  37. Rees, D.A.S., Pop, I.: g-Jitter induced free convection near a stagnation point. Heat Mass Transf. 37, 403–408 (2001)

    Article  MATH  Google Scholar 

  38. Jue, T.C., Ramaswamy, B.: Numerical analysis of thermosolutal flows in a cavity with gravity modulation effects. Heat Mass Transf. 38, 665–672 (2001)

    Article  Google Scholar 

  39. Deka, R.K., Soundalgekar, V.M.: Gravity modulation effects on transient-free convection flow past an infinite vertical isothermal plate. Def. Sci. J. 56(4), 477–483 (2006)

    Article  Google Scholar 

  40. Dyko a, M.P., Vafai, K.: Effects of gravity modulation on convection in a horizontal annulus. Int. J. Heat Mass Transf. 50, 348–360 (2007)

    Article  MATH  Google Scholar 

  41. Rajvanshi, S.C., Saini, B.S.: Free convection MHD flow past a moving vertical porous surface with gravity modulation at constant heat flux. Int. J. Theor. Appl. Sci. 2(1), 29–33 (2010)

    Google Scholar 

  42. Walters, K.: Non-Newtonian effects in some general elastico-viscous liquids. In: Proceedings of I.U.T.A.M. Symposium, Hafia, pp. 507–515 (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Jyoti Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 51 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, U.J. Free Convection Heat and Mass Transfer Flow for Magnetohydrodynamic Chemically Reacting and Radiating Elastico-Viscous Fluid Past a Vertical Permeable Plate with Gravity Modulation. Int. J. Appl. Comput. Math 3, 2021–2037 (2017). https://doi.org/10.1007/s40819-016-0222-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0222-3

Keywords

Navigation