Skip to main content
Log in

Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we propose compactly supported radial basis functions for solving some well-known classes of astrophysics problems categorized as non-linear singular initial ordinary differential equations on a semi-infinite domain. To increase the convergence rate and to decrease the collocation points, we use the compactly supported radial basis function through the integral operations. Afterwards, some special cases of the equation are presented as test examples to show the reliability of the method. Then we compare the results of this work with some results and show that the new method is efficient and applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasbandy, S., Azarnavid, B., Hashim, I., Alsaedi, A.: Approximation of backward heat conduction problem using gaussian radial basis functions. U.P.B. Sci. Bull. Ser. A 76, 67–76 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Adibi, H., Rismani, A.M.: On using modified Legendre-spectral method for solving singular IVPs of Lane–Emden type. Comput. Math. Appl. 60, 2126–2130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrawala, P.R., O’Regnab, D.: Appl. Math. Lett. 20, 119812005 (2007)

    Google Scholar 

  4. Akyüz-Daşcıoğlu, A., Çerdik Yaslan, H.: The solution of high-order nonlinear ordinary differential equations. Appl. Math. Comput. 217, 5658–5666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aslanov, A.: Determination of convergence intervals of the series solution of Emden–Fowler equations using polytropes and isothermal sphere. Phys. Lett. A 372, 3555–3561 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azarnavid, B., Parvaneh, F., Abbasbandy, S.: Picard-reproducing kernel hilbert space method for solving generalized singular nonlinear lane-emden type equations. Math. Model. Anal. 20, 754–767 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden–Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, L.M.: A new perturbative approach to nonlinear problems. J. Math. Phys. 30, 1447–1455 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benko, D., Biles, D.C., Robinson, M.P., Sparker, J.S.: Nyström method and singular second-order differential equations. Comput. Math. Appl. 56, 1975–1980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bharwy, A.H., Alofi, A.S.: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations. Commun. Nonlinear Sci. Numer. Simul. 17, 62–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boubaker, K., Van-Gorder, R.A.: Application of the BPES to Lane–Emden equations governing polytropic and isothermal gas sphere. New. Astron. 17, 565–569 (2012)

    Article  Google Scholar 

  12. Boyd, J.P.: Chebyshev spectral methods and the Lane–Emden problem. Numer. Math. Theory Methods Appl. 4(2), 142–157 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Bu, W., Ting, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Buhman, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

  15. Buhman, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, New York (2004)

    Google Scholar 

  16. Caruntu, B., Bota, C.: Approximate polynomial solutions of the nonlinear Lane–Emden type equations arising in astrophysics using the squared reminder minimization method. Comput. Phys. Commun. 184, 1643–1648 (2013)

    Article  MathSciNet  Google Scholar 

  17. Chandrasekhar, S.: Introduction to the Study of Stellar Structure. Dover, New York (1967)

    Google Scholar 

  18. Cheng, A.H.D., Golberg, M.A., Kansa, E.J., Zammito, Q.: Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ. 19, 571–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Choi, H.J., Kweon, J.R.: A finite element method for singular solutions of the Navier–Stokes equations on a non-convex polygon. J. Comput. Appl. Math. 292, 342–362 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chowdhury, M.S.H., Hashim, I.: Solution of Emden–Fowler equations by Homotopy perturbation method. J. Nonlinear Anal. Ser. A Theory Methods 10, 104–115 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Davis, H.T.: Introduction of Nonlinear Differential and Integral Equations. Dover, New York (1962)

    Google Scholar 

  22. Dehghan, M., Saadatmandi, A.: The numerical solution of a nonlinear system of second-order boundary value problems using sinc-collocation method. Math. Comput. Model. 46, 1434–1441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan, M., Shakeri, F.: Approximate solution of a differential equation arising in astrophysics using the VIM. New Astron. 13, 53–59 (2008)

    Article  Google Scholar 

  24. Dehghan, M., Shakeri, F.: Use of He’s homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media. J. Porous Media 11, 765–778 (2008)

    Article  Google Scholar 

  25. Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79, 700–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dehghan, M., Shokri, A.: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer. Algorithms 52(3), 461–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dehghan, M., Shokri, A.: A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer. Algorithms 52, 461–477 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane–Emden type. New Astron. 23–24, 113–117 (2013)

    Article  MATH  Google Scholar 

  30. Fasshauer, G.E.: On Smoothing for Multilevel Approximation with Radial Basis Functions, An Approximation Theory IX, Vol. II: Computational Aspects, Charles K. Chui and L. L. Schumakher. Vanderbilt University Press (1999)

  31. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. World Scientific Publishing Co. Pte. Ltd, Singapore (2007)

    Book  MATH  Google Scholar 

  32. Gürbüz, B., Sezer, M.: Laguerre polynomial approach for solving Lane–Emden type functional differential equations. Appl. Math. Comput. 242, 255–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. He, J.H.: Variational approach to the Lane–Emden equation. Appl. Math. Comput. 143, 539–541 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Horedt, G.P.: Polytropes: Applications in Astrophysics and Related fields. Kluwer Academic Publishers, Dordecht (2004)

    Google Scholar 

  35. Hosseini, S.G., Abbasbandy, S.: Solution of lane-emden type equations by combination of the spectral method and adomian decomposition method. U.P.B. Sci. Bull. Ser. A 2015, 1–10 (2015)

    Google Scholar 

  36. Iqbal, S., Javad, A.: Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Appl. Math. Comput. 217, 7753–7761 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Islam, S.U., S Haqb, A.A.: A meshfree method for the numerical solution of the RLW equation. J. Comput. Appl. Math. 223, 997–1012 (2009)

    Article  MathSciNet  Google Scholar 

  38. Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamic–i surface approximations and partial derivative estimates. Comput. Math. Appl. 19, 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamic-ii solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19, 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric radial basis functions applications to elliptic partial differential equations. Comput. Math. Appl. 39, 123–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaur, H., Mittal, R.C., Mishra, V.: Haar wavelet approximate solutions for the generalized Lane–Emden equations arising in astrophysics. Comput. Phys. Commun. 184, 2169–2177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kazemi-Nasab, A., Kılıçman, A., Atabakan, Z.P., Leong, W.J.: A numerical approach for solving singular nonlinear Lane–Emden type equations arising in astrophysics. New Astron. 34, 178–186 (2015)

    Article  Google Scholar 

  43. Lee, J.C., Hon, Y.C.: Domain decomposition for radial basis meshless method. Numer. Methods Partial Differ. Equ. 20, 450–462 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liao, S.: A new analytic algorithm of Lane–Emden type equation. Appl. Math. Comput. 142, 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Methods Eng. 62, 824–852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mai-Duy, N., Tran-Cong, T.: Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14, 185–199 (2001)

    Article  MATH  Google Scholar 

  47. Mai-Duy, N., Tran-Cong, T.: Numerical solution of Navier-Stocks equations using multiquadric radial basis function networks. Int. J. Numer. Methods Fluid 37, 65–86 (2001)

    Article  MATH  Google Scholar 

  48. Mall, S., Chakraverty, S.: Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput. 247, 100–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mendelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nazari-Golshan, A., Nourazar, S.S., Ghafoori-Fard, H., Yıldırım, A., Campo, A.: A modified homotopy perturbation method coupled with the Fourier transform for nonlinear and singular Lane–Emden equations. Appl. Math. Lett. 26, 1018–1025 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Noye, B.J., Dehghan, M.: New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass. Numer. Methods Partial Differ. Equ. 15, 521–534 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pandey, R.K., Kumar, N.: Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New. Astron. 17, 303–308 (2012)

    Article  Google Scholar 

  53. Pandey, R.K., Kumar, N., Bhardwaj, A., Dutta, G.: Solution of Lane–Emden type equations using Legendre operational matrix of differentiation. Appl. Math. Comput. 218, 7629–7637 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Parand, K., Khaleqi, S.: Rational chebyshev of second kind collocation method for solving a class of astrophysics problems. Eur. Phys. J. Plus 131, 24 (2016). doi:10.1140/epjp/i2016-16024-8

    Article  Google Scholar 

  55. Parand, K., Rad, J.A.: Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Comput. Phys. Commun. 184, 582–595 (2013)

    Article  MathSciNet  Google Scholar 

  56. Parand, K., Razzaghi, M.: Rational Chebyshev tau method for solving higher-order ordinary differential equations. Int. J. Comput. Math. 81(1), 73–80 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Parand, K., Razzaghi, M.: Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys. Scr. 69, 353–357 (2004)

    Article  MATH  Google Scholar 

  58. Parand, K., Dehghan, M., Rezaei, A.R., Ghaderi, S.M.: An approximation algorithm for the solution of the nonlinear Lane–Emden type equation arising in astrophysics using Hermit functions collocation method. Comput. Phys. Commun. 181, 1096–1108 (2010)

    Article  MATH  Google Scholar 

  59. Parand, K., Dehghan, M., Taghavi, A.: Modified generalized laguerre function tau method for solving laminar viscous flow: the blasius equation. Int. J. Numer. Method. Heat & Fluid Flow 20(7), 728–743 (2010)

    Article  MathSciNet  Google Scholar 

  60. Parand, K., Abbasbandy, S., Kazem, S., Rad, J.: A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. Commun. Nonlinear Sci. Numer. Simul. 16, 4250–4258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  61. Parand, K., Abbasbandy, S., Kazem, S., Rezaei, A.: An improved numerical method for a class of astrophysics problems based on radial basis functions. Physica Scripta 83(1), 015–011 (2011)

  62. Parand, K., Dehghan, M., Pirkhedri, A.: The sinc-collocation method for solving the thomas–fermi equation. J. Comput. Appl. Math. 237(1), 244–252 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  63. Parand, K., Nikarya, M., Rad, J.A.: Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method. Celest. Mech. Dyn. Astron. 116, 97–107 (2013)

    Article  MathSciNet  Google Scholar 

  64. Parand, K., Hossayni, S.A., Rad, J.: Operation matrix method based on bernstein polynomials for riccati differential equation and volterra population model. Appl. Math. Model. 40(2), 993–1011 (2016)

    Article  MathSciNet  Google Scholar 

  65. Rad, J.A., Kazem, S., Parand, K.: A numerical solution of the nonlinear controlled duffing oscillator by radial basis function. Comput. Math. Appl. 64, 2049–2065 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rad, J.A., Kazem, S., Shaban, M., Parand, K., Yildirim, A.: Numerical solution of fractional differential equations with a tau method based on Legendre and Bernstein polynomials. Math. Methods Appl. Sci. 37, 329–342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  67. Rad, J.A., Parand, K., Abbasbandy, S.: Local weak form meshless techniques based on the radial point interpolation (rpi) method and local boundary integral equation (lbie) method to evaluate european and american options. Communications in Nonlinear Science and Numerical Simulation 22(1), 1178–1200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rad, J.A., Parand, K., Ballestra, L.V.: Pricing european and american options by radial basis point interpolation. Appl. Math. Comput. 251, 363–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. Ramos, J.I.: Linearization methods in classical and quantum mechanics. Comput. Phys. Commun. 153(2), 199–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Ramos, J.I.: Linearization techniques for singular initial-value problems of ordinary differential equations. J. Appl. Math. Comput. 161, 525–542 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ramos, J.I.: Piecewise-adaptive decomposition method. Chaos Solitons Fractals 40(4), 1623–1636 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ramos, J.I.: Series approach to the Lane–Emden equation and comparison with the homotopy perturbation method. Chaos Solitons Fractals 38(2), 400–408 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Rashidi, K., Adibi, H., Rad, J.A., Parand, K.: Application of meshfree methods for solving the inverse one-dimensional stefan problem. Eng. Anal. Bound. Elem. 40, 1–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  74. Rismani, A.M., Monfared, H.: Numerical solution of singular IVPs of Lane–Emden type using a modified Legendre-spectral method. Appl. Math. Model. 36, 4830–4836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Sara, S.A.: Adaptive radial basis function method for time dependent partial differential equations. Appl. Numer. Math. 54, 79–94 (2005)

    Article  MathSciNet  Google Scholar 

  76. Shawagfeh, N.T.: Nonperturbative approximate solution of Lane-Emden equation. J. Math. Phys. 34, 4364–4369 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  77. Shen, Q.: A meshless scaling iterative algorithm based on compactly supported radial basis functions for the numerical solution of Lane–Emden–Fowler equation. Numer. Methods Partial Differ. Equ. 28, 554–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  78. Shokri, A., Dehghan, M.: A not-a-knot meshless method using radial basis functions and predictor–corrector scheme to the numerical solution of improved Boussinesq equation. Comput. Phys. Commun. 181, 1990–2000 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. Singh, O.P., Pandey, R.K., Singh, V.K.: An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified homotopy analysis method. Comput. Phys. Commun. 180, 1116–1124 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  80. Vanani, S.K., Aminataei, A.: On the numerical solution of differential equations of Lane–Emden type. Comput. Math. Appl. 59, 2815–2820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wazwaz, A.M.: A new algorithm for solving differential equations of Lane–Emden type. Appl. Math. Comput. 118, 287–310 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  82. Wazwaz, A.M.: The modified decomposition method for analytic treatment of differential equations. Appl. Math. Comput. 173, 165–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  84. Wendland, H.: Scattered Data Approximation. Cambridge University Press, New York (2005)

    MATH  Google Scholar 

  85. Wong, S.M., Hon, Y.C., Golberg, M.A.: Compactly supported radial basis function for shallow water equations. Appl. Math. Comput. 127, 79–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  86. Yıldırım, A., Öziş, T.: Solutions of singular IVPs of Lane–Emden type homotopy perturabation method. Phys. Lett. A 369, 70–76 (2007)

    Article  MATH  Google Scholar 

  87. Yıldırım, A., Öziş, T.: Solutions of singular IVPs of Lane–Emden type equations by the VIM method. J. Nonlinear Anal. Ser. A Theory Methods 70, 2480–2484 (2009)

    Article  MATH  Google Scholar 

  88. Yousefi, S.A.: Legendre wavelet method for solving differential equations of Lane–Emden type. Appl. Math. Comput 181, 1417–1422 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  89. Yüzbaşı, S.: A numerical approach for solving the high-order linear singular differential-difference equations. Comput. Math. Appl. 62, 2289–2303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yüzbaşı, S., Sezer, M.: An improved Bessel collocation method with a residual error function to solve a class of Lane–Emden differential equations. Math. Comput. Model. 57, 1298–1311 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hemami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parand, K., Hemami, M. Numerical Study of Astrophysics Equations by Meshless Collocation Method Based on Compactly Supported Radial Basis Function. Int. J. Appl. Comput. Math 3, 1053–1075 (2017). https://doi.org/10.1007/s40819-016-0161-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0161-z

Keywords

Navigation