Skip to main content
Log in

Slow Steady Rotation of an Approximate Sphere in an Approximate Spherical Container with Slip Surfaces

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The slow steady rotation of an approximate sphere (whose shape deviates slightly from that of a sphere) in a concentric approximate spherical container is studied analytically. The slip boundary condition is applied at the particle and container surfaces. An exact solution is obtained to the first order in the small parameter characterizing the deformation. The hydrodynamic couple and coupling coefficient exerted on the particle in presence of the cavity is calculated. As an application, the case of flow past spheroid in a spheroidal container is considered and the couple experienced by spheroid is evaluated. In the limiting cases, the hydrodynamic couple acting on the sphere in an unbounded medium is obtained in case of no slip condition. It is noticed that under the Stokesian assumption, the deformation in the body has significant influence on the couple experienced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanwal, R.P.: Slow steady rotation of axially symmetric bodies in a viscous fluid. J. Fluid Mech. 10(1), 17–24 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jeffery, G.B.: On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14, 327–338 (1915)

  3. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Fluid Mechanics, vol. 6. Pergamon Press, London (1959)

  4. Munson, B.R., Joseph, D.D.: Viscous incompressible flow between concentric rotating spheres. Part 1. Basic flow. J. Fluid Mech. 49(2), 289–303 (1971)

    Article  MATH  Google Scholar 

  5. Astafeva, N.M., Brailovskaya, I.Y., Yavorskaya, I.M.: Nonstationary compressible viscous fluid motion in a spherical layer. Fluid Dyn. 7, 370–375 (1972)

    Article  Google Scholar 

  6. Munson, B.R.: Viscous incompressible flow between eccentric coaxially rotating spheres. Phys. Fluids 17, 528–531 (1974)

    Article  MATH  Google Scholar 

  7. Cooley, M.D.A.: The slow rotation in a viscous fluid of a sphere close to another fixed sphere about a diameter perpendicular to the line of centers. Quart. J. Mech. Appl. Math. 24(2), 237–250 (1971)

    Article  MATH  Google Scholar 

  8. Dennis, S.C.R., Ingham, D.B., Singh, S.N.: The steady flow of a viscous fluid due to a rotating sphere. Quart. J. Mech. Appl. Math. 34(3), 361–381 (1981)

    Article  MATH  Google Scholar 

  9. Shankar, P.N.: Exact solutions for stokes flow in and around a sphere and between concentric spheres. J. Fluid Mech. 631, 363–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Srivastava, D.K.: Stokes flow around rotating axially symmetric pervious body. J. Appl. Fluid Mech. 6(3), 435–442 (2013)

    Google Scholar 

  11. Srivastava, D.K., Yadav, R.R., Yadav, S.: Stokes flow around slowly rotating concentric pervious spheres. Arch. Mech. Eng. 60(2), 165–219 (2013)

    Google Scholar 

  12. Ashmawy, E.A.: Slip at the surface of a general axi-symmetric body rotating in a viscous fluid. Arch. Mech. 63, 341–361 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Ashmawy, E.A.: Steady rotation of an axially symmetric porous particle about its axis of revolution in a viscous fluid using Brinkman model. Eur. J. Mech. B/Fluids 50, 147–155 (2015)

    Article  MathSciNet  Google Scholar 

  14. Keh, H.J., Lee, T.C.: Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor. Comput. Fluid Dyn. 24, 497–510 (2010)

    Article  MATH  Google Scholar 

  15. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859–2897 (2005)

    Article  Google Scholar 

  16. Kennard, E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)

    Google Scholar 

  17. Ying, R., Peters, M.H.: Interparticle and particle-surface gas dynamic interactions. Aerosol Sci. Technol. 14(4), 418–433 (1991)

    Article  Google Scholar 

  18. Hutchins, D.K., Harper, M.H., Felder, R.L.: Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol Sci. Technol. 22(2), 202–218 (1995)

    Article  Google Scholar 

  19. Navier, C.L.M.H.: Memoirs de lacademie royale des sciences de linstitut de france 1, 414–416 (1823)

  20. Silliman, W.J., Scriven, L.E.: Slip of liquid inside a channel exit. Phys. Fluids 21(11), 2115–2116 (1978)

    Article  Google Scholar 

  21. Basset, A.B.: A Treatise on Hydrodynamics. Dover, New York (1961)

    Google Scholar 

  22. Keh, H.J., Chang, J.H.: Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chem Eng Sci 53(13), 2365–2377 (1998)

    Article  Google Scholar 

  23. Tekasakul, P., Loyalka, S.K.: Rotary oscillations of axi-symmetric bodies in an axi-symmetric viscous flow with slip: numerical solutions for spheres and spheroids. Int. J. Numer. Methods Fluids 41(8), 823–840 (2003)

    Article  MATH  Google Scholar 

  24. Keh, H.J., Chang, Y.C.: Creeping motion of a slip spherical particle in a circular cylindrical pore. Int. J. Multiph. Flow 33(7), 726–741 (2007)

    Article  Google Scholar 

  25. Senchenko, S., Keh, H.J.: Slipping stokes flow around a slightly derformed sphere. Phys. Fluids 18(8), 088101–088104 (2006)

  26. Faltas, M.S., Saad, E.I.: Stokes flow between eccentric rotating spheres with slip regime. Z. Angew. Math. Phys. 63(5), 905–919 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sherief, H.H., Faltas, M.S., Ashmawy, E.A.: Stokes flow between two confocal rotating spheroids with slip. Arch. Appl. Mech. 82(7), 937–948 (2012)

    Article  MATH  Google Scholar 

  28. Chang, Y.C., Keh, H.J.: Creeping flow rotation of a slip spheroid about its axis of revolution. Theor. Comput. Fluid Dyn. 26, 173–183 (2012)

    Article  MATH  Google Scholar 

  29. Wan, Y.W., Keh, H.J.: Slow rotation of an axisymmetric slip particle about Its axis of revolution. Comp. Mod. Eng. Sci. 53, 73–93 (2009)

    Google Scholar 

  30. Sherief, H.H., Faltas, M.S., Saad, E.I.: Slip at the surface of an oscillating spheroidal particle in a micropolar fluid. ANZIAM J. 55(E), E1–E50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sherief, H.H., Faltas, M.S., Ashmawy, E.A., Nashwan, M.G.: Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip. Phys. Scr. 90(5), 055203 (2015)

    Article  Google Scholar 

  32. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs (1965)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krishna Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, M.K., Kaur, M. & Srinivasacharya, D. Slow Steady Rotation of an Approximate Sphere in an Approximate Spherical Container with Slip Surfaces. Int. J. Appl. Comput. Math 3, 987–999 (2017). https://doi.org/10.1007/s40819-016-0151-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0151-1

Keywords

Mathematics Subject Classification

Navigation