Skip to main content
Log in

Axisymmetric Flow Over a Vertical Slender Cylinder in the Presence of Chemically Reactive Species

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The Combined buoyancy effect due to thermal diffusion as well as species diffusion on the boundary layer flow over a slender cylinder in the presence of a chemical reaction is investigated. Using an appropriate transformation, the governing equations are transformed into a system of coupled non-linear ordinary differential equations and are solved numerically via finite difference scheme. The obtained numerical results are compared with the available results in the literature for some special cases and the results are found to be in excellent agreement. The velocity, temperature, and the concentration profiles are presented graphically and analyzed for several sets of the physical parameters. The pooled effect of the thermal and mass Grashof number is to enhance the velocity and is quite the opposite for temperature and the concentration fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(a, b, a_o , b_0 , a_{11} ,b_{11}\) :

Constants

\(c_p \) :

Specific heat at constant pressure

C :

Concentration of the fluid

\(C_f\) :

Skin friction coefficient

\(C_w \) :

Concentration at the surface (\(\hbox {mol m}^{-3}\))

\(C_\infty \) :

Concentration of the fluid for away from the wall (\(\hbox {mol m}^{-3}\))

D (C):

Concentration dependent diffusion coefficient

\(D_\infty \) :

Diffusion coefficient for away from the wall

f :

Dimensionless stream function

g :

Acceleration due to gravity (\(\hbox {m/s}^{2}\))

Gr :

Thermal Grashof number

Gc :

Mass Grashof number

k(T):

Temperature-dependent thermal conductivity

\(k_w \) :

Thermal conductivity at the wall (\(\hbox {W m}^{-1}~\hbox {K}^{-1})\)

\(k_1 \) :

Chemical reaction parameter

\(k_\infty \) :

Thermal conductivity for away from the wall

l :

Reference length scale

M:

Kummer’s function

\(Nu_x \) :

Local Nusselt number

\(\Pr \) :

Prandtl number

r :

Radial coordinate

R :

Radius of the cylinder

\(\hbox {Re}_x \) :

Local Reynolds number Sc Schmidt number

\(Sh_x \) :

Local Sherwood number

T :

Fluid temperature (K)

\(T_w \) :

Surface temperature (K)

\(T_\infty \) :

Ambient temperature (K)

u :

Axial velocity component (m/s)

\(U_w \) :

Stretching velocity (m/s)

\(\hbox {v}\) :

Radial velocity component (m/s)

x :

Axial coordinate

\(\beta \) :

Thermal expansion coefficient

\(\beta ^{*}\) :

Concentration expansion coefficient

\(\gamma \) :

Transverse curvature

\(\delta \) :

Reaction rate parameter

\(\varepsilon _1 \) :

Variable thermal conductivity wall

\(\varepsilon _2 \) :

Variable diffusivity

\(\eta \) :

Similarity variable

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Dynamic viscosity (m\(^{2}\)/s)

\(\nu \) :

Kinematic viscosity (m\(^{2}\)/s)

\(\rho \) :

Density (kg/m\(^{3})\)

\(\phi \) :

Dimensionless concentration

\(\psi \) :

Stream function

w :

Conditions at the stretching sheet

\(\infty \) :

Condition at infinity

\(^{\prime }\) :

differentiation with respect to \(\eta \)

References

  1. Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums, Cambridge Phil. Trans. IX, p. 8. (1851)

  2. Chambre, P.L., Young, J.D.: On diffusion of a chemically reactive species in a laminar boundary layer flow. Phys. Fluids 1, 48–54 (1958)

    Article  MATH  Google Scholar 

  3. Das, U.N., Deka, R., Soundalgekar, V.M.: Effect of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction. Forsch. Ingenieurwes. 60, 284–287 (1994)

    Article  Google Scholar 

  4. Andersson, H.I., Hansen, O.R., Holmedal, B.: Diffusion of a chemically reactive species from a stretching sheet. Int. J. Heat Mass Trans. 37, 659–664 (1994)

    Article  MATH  Google Scholar 

  5. Prasad, K.V., Abel, S., Datti, P.S.: Diffusion of electrically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. Internat. J. Non Linear Mech. 38, 651 (2003)

    Article  MATH  Google Scholar 

  6. Akyildiz, F.T., Bellout, H., Vajravelu, K.: Diffusion of chemically reactive species in a porous medium over a stretching sheet. J. Math. Anal. Appl. 320, 322–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamkha, A.J., Aly, A.M., Mansour, M.A.: Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/ injection and chemical reaction effects. Chem. Eng. Commun. 197, 846–858 (2010)

    Article  Google Scholar 

  8. Vajravelu, K., Prasad, K.V., Sujatha, A., Chiu-On, N.G.: MHD flow and mass transfer of chemically reactive upper convected Maxwell (UCM) fluid past porous surface. Appl. Math. Mech. Engl. Ed. 33(7), 1–12 (2012)

    Article  MATH  Google Scholar 

  9. Mabood, F., Khan, W.A., Md. Ismail, A.I.: MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration. Chem. Eng. J. 273, 430–437 (2015)

    Article  Google Scholar 

  10. Lin, H.T., Shih, Y.P.: Laminar boundary layer heat transfer along static and moving cylinders. J. Chin. Inst. Eng. 3, 73–79 (1980)

    Article  Google Scholar 

  11. Lin, H.T., Shih, Y.P.: Buoyancy effects on the laminar boundary layer heat transfer along vertically moving cylinders. J. Chin. Inst. Eng. 4, 47–51 (1981)

    Article  Google Scholar 

  12. Ganesan, P., Loganathan, P.: Unsteady natural convective flow past a moving vertical cylinder with heat and mass transfer. Heat Mass Transf. Phys. 79, 73–78 (2001)

    MATH  Google Scholar 

  13. Bachok, N., Ishak, A.: Mixed convection boundary layer flow over a permeable vertical cylinder with prescribed surface heat flux. Euro. J. Sci. Res. 34, 46–54 (2009)

    Google Scholar 

  14. Bachok, N., Ishak, A.: Flow and heat transfer over a stretching cylinder with prescribed surface heat flux. Malaysian J. Math. Sci. 4, 159–169 (2010)

    MATH  Google Scholar 

  15. Vajravelu, K., Prasad, K.V., Santhi, S.R.: Axisymmetric magneto-hydrodynamic (MHD) flow and heat transfer at a non-isothermal stretching cylinder. Appl. Math. Comput. 219, 3993–4005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hayat, T., Anwar, M.S., Farooq, M., Alsaedi, A.: Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer. PLoS ONE 10(3), e0118815 (2015). doi:10.1371/journal

    Article  Google Scholar 

  17. Cortell, R.: Toward an understanding of the motion and mass transfer with chemically reactive species for two classes of viscoelastic fluid over a porous stretching sheet. Chem. Eng. Process. 46(10), 982–989 (2007)

    Article  Google Scholar 

  18. Cortell, R.: MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. Chem. Eng. Pro Pro Intensif. 46(8), 721–728 (2007)

    Article  Google Scholar 

  19. Ishak, A.: Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Appl. Math. Comput. 217(2), 837–842 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehmood, R., Nadeem, S., Akbar, N.: Oblique stagnation flow of Jeffery fluid over a stretching convective surface: optimal solution. Int. J. Numer. Methods Heat Fluid Flow 25(3), 454–471 (2015)

    Article  MATH  Google Scholar 

  21. Nadeem Mehmood, S., Rashid Akbar, N.S.: Oblique stagnation point flow of carbon nano tube based fluid over a convective surface. J. Comput. Theor. Nanosci. 12(4), 605–612(8) (2015)

  22. Noor, N.F.M., Rizwan Ul Haq, Nadeem, S., Hashim, I.: Mixed convection stagnation flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Meccanica 50(8), 2007–2022 (2015)

    Article  MathSciNet  Google Scholar 

  23. Rekha, R.R., Ahmed, N.: Boundary layer flow past a stretching cylinder and heat transfer with variable thermal conductivity. Appl. Math. 3, 205–209 (2012)

    Article  MathSciNet  Google Scholar 

  24. Gupta, P.S., Gupta, A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  25. Crane, L.J.: Flow past a stretching plate. ZAMP 21, 645–64 (1970)

    Article  Google Scholar 

  26. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  27. Cebeci, T., Bradshaw, P.: Physical and Computational Aspects of Convective Heat Transfer. Springer, NewYork (1984)

    Book  MATH  Google Scholar 

  28. Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978)

    Article  MathSciNet  Google Scholar 

  29. Vajravelu, K., Prasad, K.V.: Keller-Box Method and Its Application. HEP and Walter De Gruyter GmbH, Berlin/Boston (2014)

    Book  MATH  Google Scholar 

  30. Ishak, A., Nazar, R., Pop, I.: Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 44, 921–927 (2008)

    Article  Google Scholar 

  31. Chen, C.-H.: Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/ absorption. Int. J. Non Linear Mech. 44, 596–603 (2009)

    Article  MATH  Google Scholar 

  32. Elbashbeshy, E.M.A., Aldawody, D.A.: Effects of thermal radiation and magnetic field on unsteady mixed convection flow and heat transfer over a porous stretching surface in the presence of internal heat generation/absorption. Int. J. Phy. Sci. 6, 1540–1548 (2011)

    Google Scholar 

  33. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transf. 107, 248–250 (1985)

    Article  Google Scholar 

  34. Ali, M.E.: Heat transfer characteristics of a continuous stretching surface. Heat Mass Transf. 29, 227–234 (1994)

    Google Scholar 

  35. Ishak, A., Nazar, R., Pop, I.: Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica 44, 369–375 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors appreciate the constructive comments of the reviewer which led to definite improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, K.V., Vajravelu, K., Vaidya, H. et al. Axisymmetric Flow Over a Vertical Slender Cylinder in the Presence of Chemically Reactive Species. Int. J. Appl. Comput. Math 3, 663–678 (2017). https://doi.org/10.1007/s40819-015-0121-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0121-z

Keywords

Navigation