Skip to main content
Log in

Magnetogasdynamic Shock Waves in Non-ideal Gas Under Gravitational Field-Isothermal Flow

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Self-similar solutions are obtained for one-dimensional unsteady isothermal flow of non-ideal gas with gravitational effects behind a spherical shock wave, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven out by a moving piston with time according to power law. The gas is assumed to be non-ideal having infinite electrical conductivity. The medium is under the influence of the gravitational field due to a heavy nucleus at the origin (Roche model). The effects of variation of the parameter of non-idealness of the gas, the Alfven–Mach number and the gravitational parameter on the flow-field behind the shock are investigated. It is shown that the presence of magnetic field, gravitational field and non-idealness of the gas has decaying effect on the shock wave. Further, it is investigated that the shock strength decreases due to an increase in the strength of magnetic field, gravitational and non-idealness parameter. The present study can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  2. Carrus, P.A., Fox, P.A., Hass, F., Kopal, Z.: Propagation of shock waves in the generalized Roche model. Astrophys. J. 113, 193–209 (1951)

    Article  MathSciNet  Google Scholar 

  3. Rogers, M.H.: Analytic solutions for the blast-wave problem with an atmosphere of varying density. Astrophys. J. 125, 478–493 (1957)

    Article  MathSciNet  Google Scholar 

  4. Ojha, S.N., Nath, Onkar, Takhar, H.S.: Dynamical behaviour of an unstable magnetic star. J. MHD Plasma Res. 8, 1–14 (1998)

  5. Rosenau, P.: Equatorial propagation of axisymmetric magnetogasdynamic shocks II. Phys. Fluids 20, 1097–1103 (1977)

    Article  Google Scholar 

  6. Singh, J.B.: A self-similar flow in generalized Roche model with increasing energy. Astrophys. Space Sci. 88, 269–275 (1977)

    Article  MATH  Google Scholar 

  7. Anisimov, S.I., Spiner, O.M.: Motion of an almost ideal gas in the presence of a strong point explosion. J. Appl. Math. Mech. 36, 883–887 (1972)

    Article  Google Scholar 

  8. Ranga Rao, M.P., Purohit, N.K.: Self-similar piston problem in non-ideal gas. Int. J. Eng. Sci. 14, 91–97 (1976)

    Article  MATH  Google Scholar 

  9. Ojha, S.N., Tiwari, M.S.: Shock wave propagation in non-ideal fluid. Earth Moon Planets 62, 273–287 (1993)

    Article  MATH  Google Scholar 

  10. Viswhwakarma, J.P., Nath, G.: Similarity solutions for the flow behind an exponential shock in a non- ideal gas. Meccanica 42, 331–339 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Viswhwakarma, J.P., Nath, G.: Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux. Phys. Scr. 81, 045401 (2010). (9 pp)

    Article  MATH  Google Scholar 

  12. Nath, G., Vishwakarma, J.P.: Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat flux in magnetogasdynamics. Commun. Nonlinear Sci. Numer. Simul. 19, 1347–1365 (2014)

  13. Nath, G.: Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics. Ain Shams Eng. J. 3, 393–401 (2012)

    Article  Google Scholar 

  14. Nath, G.: Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas. Meccanica 50, 1701–1715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, C.C., Roberts, P.H.: Shock wave propagation in a sonoluminescing gas bubble. Phys. Rev. Lett. 70, 3424–3427 (1993)

    Article  Google Scholar 

  16. Roberts, P.H., Wu, C.C.: Structure and stability of a spherical implosion. Phys. Lett. A 213, 59–64 (1996)

    Article  Google Scholar 

  17. Korobeinikov, V.P.: Problems in the theory of point explosion in gases. In: Proceedings of the Steklov Institute of Mathematics, vol. 119. American Mathematical Society, Providence (1976)

  18. Shang, J.S.: Recent research in magneto-aerodynamics. Prog. Aerosp. Sci. 21, 1–20 (2001)

    Article  Google Scholar 

  19. Lock, R.M., Mestel, A.J.: Annular self-similar solution in ideal gas magnetogasdynamics. J. Fluid Mech. 74, 531–554 (2008)

    MATH  Google Scholar 

  20. Vishwakarma, J.P., Patel, N.: Magnetogasdynamic cylindrical shock waves in a rotating non-ideal gas with radiation heat flux. J. Eng. Phys. Thermophys. 88, 521–530 (2015)

    Article  Google Scholar 

  21. Singh, R., Singh, L.P.: Solution of the Riemann problem in magnetogasdynamics. Int. J. Non-Linear Mech. 67, 326–330 (2014)

    Article  Google Scholar 

  22. Hartmann, L.: Accretion Processes in Star Formation. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  23. Balick, B., Frank, A.: Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002)

    Article  Google Scholar 

  24. Laumbach, D.D., Probstein, R.F.: Self-similar strong shocks with radiation in a decreasing exponential atmosphere. Phys. Fluids 13, 1178–1183 (1970)

    Article  Google Scholar 

  25. Sachdev, P.L., Ashraf, S.: Converging spherical and cylindrical shocks with zero temperature gradient in the rear flow-field. J. Appl. Math. Phys. (ZAMP) 22, 1095–1102 (1971)

    Article  MATH  Google Scholar 

  26. Ashraf, S., Ahmad, Z.: Approximate analytic solution of a strong shock with radiation near the surface of star. J. Pure. Appl. Math. 6, 1090–1098 (1975)

    MATH  Google Scholar 

  27. Zhuravskaya, T.A., Levin, V.A.: The propagation of converging and diverging shock waves under the intense heat exchange conditions. J. Appl. Math. Mech. 60, 745–752 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lerch, I.: Mathematical theory of one-dimensional isothermal blast waves in a magnetic field. Aust. J. Phys. 32, 491–502 (1979)

    Article  MathSciNet  Google Scholar 

  29. Lerch, I.: Mathematical theory of cylindrical isothermal blast waves in a magnetic field. Aust. J. Phys. 34, 279–301 (1981)

    Article  MathSciNet  Google Scholar 

  30. Summers, D.: An idealized model of a magnetogasdynamic spherical blast wave applied to a flare produced shock in the solar wind. Astron. Astrophys. 45, 151–158 (1975)

    Google Scholar 

  31. Rosenau, P., Frankenthal, S.: Equatorial propagation of axisymmetric magnetohydrodynamic shocks. Phys. Fluids 19, 1889–1999 (1976)

    Article  MATH  Google Scholar 

  32. Zel’dovich, YaB, Raizer, YuP: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. II. Academic Press, New York (1967)

    Google Scholar 

  33. Steiner, H., Hirschler, T.: A self-similar solution of a shock propagation in a dusty gas. Eur. J. Mech. B Fluids 21, 371–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nath, G.: Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles. Meccanica 47, 1797–1814 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G., Sinha, A.K. Magnetogasdynamic Shock Waves in Non-ideal Gas Under Gravitational Field-Isothermal Flow. Int. J. Appl. Comput. Math 3, 225–238 (2017). https://doi.org/10.1007/s40819-015-0101-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-015-0101-3

Keywords

Navigation