Skip to main content
Log in

The Characteristic Gluing Problem and Conservation Laws for the Wave Equation on Null Hypersurfaces

  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We obtain necessary and sufficient conditions for the existence of “conservation laws” on null hypersurfaces for the wave equation on general four-dimensional Lorentzian manifolds. Examples of null hypersurfaces exhibiting such conservation laws include the standard null cones of Minkowski spacetime and the degenerate horizons of extremal black holes. Another (limiting) example of such a conservation law is that which gives rise to the well-known Newman–Penrose constants along the null infinity of asymptotically flat spacetimes. The existence of such conservation laws can be viewed as an obstruction to a certain gluing construction for characteristic initial data for the wave equation. We initiate the general study of the latter gluing problem and show that the existence of conservation laws is in fact the only obstruction. Our method relies on a novel elliptic structure associated to a foliation with 2-spheres of a null hypersurface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It will follow in particular from this characterization that generic Lorentzian manifolds do not admit such charges.

  2. Topologies with higher genus can be treated analogously. Our argument heavily relies on the compactness of the sections and hence the non-compact case remains an open problem.

  3. The detailed description and well-posedness for the characteristic initial value problem of hyperbolic equations can be found in [39].

  4. For simplicity, we will often use the same notation for the operator \(\mathcal {Q}^{\mathcal {S}}\) and its restriction \(\mathcal {Q}^{\mathcal {S}}_{v}\) on the section \(S_{v}\) of \(\mathcal {S}\) on \(\mathcal {H}\).

  5. Which by Theorem 2 admits a unique conservation law.

  6. After all, the conserved charges are appropriate integrals over the leaves of the foliation.

  7. Since the kernel of \(\mathcal {O}_{v}^{\mathcal {S},\epsilon }\) is trivial at \(S_{0}\), there is no need to investigate the kernel of \(\mathcal {O}_{v}^{\mathcal {S},\epsilon }\) for \(v\ne 0\).

  8. Note that under these assumptions we can use the calculations in [7] and the method of the present subsection to deduce that there must exist a section S such that \(\left. tr{\underline{\chi }}\right| =c,\) where \(c<0\) is constant on S.

  9. No other assumptions are required for the metric; in particular no constraint equations need to be satisfied on null infinity.

References

  1. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. arXiv:0908.2265

  2. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853–888 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12, 1491–1538 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aretakis, S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263, 2770–2831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aretakis, S.: Horizon instability of extremal black holes. arXiv:1206.6598 (2012)

  7. Aretakis, S.: On a foliation-covariant elliptic operator on null hypersurfaces. arXiv:1310.1348 (2013)

  8. Aretakis, S.: On a non-linear instability of extremal black holes. Phys. Rev. D 87, 084052 (2013)

    Article  ADS  Google Scholar 

  9. Bizon, P., Friedrich, H.: A remark about the wave equations on the extreme Reissner–Nordström black hole exterior. Class. Quantum Gravity 30, 065001 (2013)

    Article  ADS  MATH  Google Scholar 

  10. Christodoulou, D.: Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 67, 1486–1489 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Christodoulou, D.: The Formation of Black Holes in General Relativity. European Mathematical Society Publishing House, Zürich (2009)

    Book  MATH  Google Scholar 

  12. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, Princeton (1994)

    Book  MATH  Google Scholar 

  13. Chruściel, P .T., MacCallum, M.A .H., Singleton, D .B.: Gravitational waves in general relativity XIV. Bondi expansions and the “polyhomogeneity” of Scri. Philos. Trans. R. Soc. Lond. A. 350, 113 (1995)

    Article  ADS  MATH  Google Scholar 

  14. Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I–II: the cases \(|a|\ll m\) or axisymmetry (2010). arXiv:1010.5132

  15. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T. (ed.) Proceedings of the 12 Marcel Grossmann Meeting, pp. 132–189. World Scientific, Singapore (2011). arXiv:1010.5137

  16. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Evolution Equations, Clay Mathematics Proceedings, Vol. 17. Amer. Math. Soc., Providence, RI, pp. 97–205 (2013). arXiv:0811.0354

  17. Dain, S., Dotti, G.: The wave equation on the extreme Reissner–Nordström black hole (2012). arXiv:1209.0213

  18. Evans, L.C.: Partial Differential Equations. In: Graduate Studies in Mathematics, Vol. 19. Amer. Math. Soc. (1998)

  19. Exton, A.R., Newman, E.T., Penrose, R.: Conserved quantities in the Einstein–Maxwell theory. J. Math. Phys. 10, 1566–1570 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  20. Goldberg, J.N.: Invariant transformations and Newman–Penrose constants. J. Math. Phys. 8, 2161–2166 (1967)

    Article  ADS  MATH  Google Scholar 

  21. Goldberg, J.N.: Green’s theorem and invariant tranformations. J. Math. Phys. 9, 674–679 (1968)

    Article  ADS  MATH  Google Scholar 

  22. Goldberg, J.N.: Conservation of the Newman–Penrose conserved quantities. Phys. Rev. Lett. 28, 1400 (1972)

    Article  ADS  Google Scholar 

  23. Hawking, S., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  24. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  25. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  26. Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lect. Appl. Math. 23, 293–326 (1986)

    MathSciNet  MATH  Google Scholar 

  27. Kroon, J.A.V.: Conserved quantities for polyhomogeneous spacetimes. Class. Quantum Gravity 15, 2479 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kroon, J.A.V.: Logarithmic Newman–Penrose constants for arbitrary polyhomogeneous spacetimes. Class. Quantum Gravity 16, 1653 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kroon, J.A.V.: On Killing vector fields and Newman–Penrose constants. J. Math. Phys. 41, 898 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N.: On the horizon instability of an extreme Reissner–Nordström black hole. In: JHEP 1303, 035 (2013). arXiv:1212.2557

  31. Lucietti, J., Reall, H.: Gravitational instability of an extreme Kerr black hole. Phys. Rev. D 86, 104030 (2012)

    Article  ADS  Google Scholar 

  32. Murata, K.: Instability of higher dimensional extreme black holes. Class. Quantum Gravity 30, 075002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Murata, K., Reall, H.S., Tanahashi, N.: What happens at the horizon(s) of an extreme black hole? (2013). arXiv:1307.6800

  34. Newman, E.T., Penrose, R.: 10 exact gravitationally conserved quantities. Phys. Rev. Lett. 15, 231 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  35. Newman, E.T., Penrose, R.: New conservation laws for zero rest mass fields in asympotically flat space-time. Proc. R. Soc. A 305, 175204 (1968)

    Article  Google Scholar 

  36. Ori, A.: Late-time tails in extremal Reissner–Nordström spacetime (2013). arXiv:1305.1564

  37. Press, W.H., Bardeen, J.M.: Non-conservation of the Newman–Penrose conserved quantities. Phys. Rev. Lett. 27, 1303 (1971)

    Article  ADS  Google Scholar 

  38. Ralston, J.: Gaussian beams and the propagation of singularities. Stud. Partial Differ. Equ. MAA Stud. Math. 23, 206–248 (1983)

    MathSciNet  Google Scholar 

  39. Rendall, A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. Roy. Soc. London Ser. A 427(1872), 221–239 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Robinson, D.C.: Conserved quantities of Newman and Penrose. J. Math. Phys. 9, 1745–1753 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  41. Sbierski, J.: Characterisation of the energy of Gaussian beams on Lorentzian manifolds with applications to black hole spacetimes Anal. PDE 8(2015), 1379–1420 (2013)

  42. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2008, 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Mihalis Dafermos, Georgios Moschidis, Willie Wong and Shiwu Yang for their help and insights. I would also like to thank Harvey Reall, Sergiu Klainerman, Jan Sbierski and Jeremy Szeftel for several very stimulating discussions and comments. I acknowledge support through NSF Grants DMS-1128155 and DMS-1265538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Aretakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aretakis, S. The Characteristic Gluing Problem and Conservation Laws for the Wave Equation on Null Hypersurfaces. Ann. PDE 3, 3 (2017). https://doi.org/10.1007/s40818-017-0023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-017-0023-y

Keywords

Navigation