Skip to main content
Log in

Stabilization of Fractional-Order T–S Fuzzy Systems with Time Delays via an \(H_\infty\) Performance Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Takagi–Sugeno (T–S) fuzzy model is an effective technology for describing complex nonlinear industrial processes and dynamic systems with unmeasurable parameters. However, to stabilize this type of system, feedback linearization techniques and complex adaptive schemes usually need to be adopted. This paper focuses on the stabilization of uncertain fractional-order (FO) systems with unmeasurable states, external disturbances, and time delays, where certain “IF-THEN” rules based on an FO T–S model are proposed to describe FO systems. A new FO \(H_\infty\) performance model is established to provide stabilization sufficient conditions. A fuzzy observer is implemented to reconstruct system states, and a feedback controller is established to stabilize the integrated system. Benefiting from a continuous frequency distribution model, the stabilization can be discussed through integer-order stabilization theories, and several stabilization conditions are obtained. Moreover, the proposed control approach avoids the usage of feedback linearization techniques, which effectively reduces the computational complexity. Apart from theoretical analysis, through a numerical experiment, the feasibility of derived results is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article since no associated the date.

References

  1. Magin, R.L.: Fractional calculus in bioengineering: a tool to model complex dynamics. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 464–469. IEEE (2012)

  2. Kumar D, Baleanu D.: Fractional calculus and its applications in physics. Frontiers physics. 7, 81 (2019)

  3. Machado, J.T., Mata, M.E.: Pseudo phase plane and fractional calculus modeling of western global economic downturn. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 396–406 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  5. Precup, R.-E., Angelov, P., Costa, B.S.J., Sayed-Mouchaweh, M.: An overview on fault diagnosis and nature-inspired optimal control of industrial process applications. Comput. Ind. 74, 75–94 (2015)

    Article  Google Scholar 

  6. Efe, M.Ö.: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Trans. Syst, Man Cybern. B (Cybern.) 38(6), 1561–1570 (2008)

    Article  PubMed  Google Scholar 

  7. Zhou, Y., Wang, H., Liu, H.: Generalized function projective synchronization of incommensurate fractional-order chaotic systems with inputs saturation. Int. J. Fuzzy Syst. 21, 823–836 (2019)

    Article  MathSciNet  Google Scholar 

  8. Gegov, A.E., Frank, P.M.: Hierarchical fuzzy control of multivariable systems. Fuzzy Sets Syst. 72(3), 299–310 (1995)

    Article  MathSciNet  Google Scholar 

  9. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1, 116–132 (1985)

    Article  Google Scholar 

  10. Mirzajani, S., Aghababa, M.P., Heydari, A.: Adaptive T–S fuzzy control design for fractional-order systems with parametric uncertainty and input constraint. Fuzzy Sets Syst. 365, 22–39 (2019)

    Article  MathSciNet  Google Scholar 

  11. Kavikumar, R., Ma, Y.K., Ren, Y., Anthoni, S.M., et al.: Observer-based \({H}_\infty\) repetitive control for fractional-order interval type-2 TS fuzzy systems. IEEE Access 6, 49828–49837 (2018)

    Article  Google Scholar 

  12. Bai, J., Wen, G., Rahmani, A., Yu, Y.: Distributed consensus tracking for the fractional-order multi-agent systems based on the sliding mode control method. Neurocomputing 235, 210–216 (2017)

    Article  Google Scholar 

  13. Lin, T.C., Lee, T.Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)

    Article  Google Scholar 

  14. Zhang, H., Zeng, Z.: Synchronization of nonidentical neural networks with unknown parameters and diffusion effects via robust adaptive control techniques. IEEE Trans. Cybern. 51(2), 660–672 (2019)

    Article  Google Scholar 

  15. Tan, L.N., Cong, T.P., Cong, D.P.: Neural network observers and sensorless robust optimal control for partially unknown PMSM with disturbances and saturating voltages. IEEE Trans. Power Electron. 36(10), 12045–12056 (2021)

    Article  ADS  Google Scholar 

  16. Liu, H., Pan, Y., Cao, J.: Composite learning adaptive dynamic surface control of fractional-order nonlinear systems. IEEE Trans. Cybern. 50(6), 2557–2567 (2019)

    Article  PubMed  Google Scholar 

  17. Li, Z., Gao, L., Chen, W., Xu, Y.: Distributed adaptive cooperative tracking of uncertain nonlinear fractional-order multi-agent systems. IEEE/CAA J. Autom. Sin. 7(1), 292–300 (2019)

    Article  MathSciNet  Google Scholar 

  18. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)

    Article  MathSciNet  Google Scholar 

  19. Zeng, H.-B., Teo, K.L., He, Y.: A new looped-functional for stability analysis of sampled-data systems. Automatica 82, 328–331 (2017)

    Article  MathSciNet  Google Scholar 

  20. Liu, H., Pan, Y., Cao, J., Wang, H., Zhou, Y.: Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5166–5177 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  21. Sakthivel, R., Raajananthini, K., Kwon, O., Mohanapriya, S.: Estimation and disturbance rejection performance for fractional order fuzzy systems. ISA Trans. 92, 65–74 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, Y., Nian, Y., Wang, D.: Controlling fractional order chaotic systems based on Takagi–Sugeno fuzzy model and adaptive adjustment mechanism. Phys. Lett. A 375(2), 125–129 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Wang, X., Park, J.H., She, K., Zhong, S., Shi, L.: Stabilization of chaotic systems with T–S fuzzy model and nonuniform sampling: a switched fuzzy control approach. IEEE Trans. Fuzzy Syst. 27(6), 1263–1271 (2018)

    Article  Google Scholar 

  24. Tseng, C.-S., Chen, B.-S., Uang, H.-J.: Fuzzy tracking control design for nonlinear dynamic systems via T–S fuzzy model. IEEE Trans. Fuzzy Syst. 9(3), 381–392 (2001)

    Article  Google Scholar 

  25. Djennoune, S., Bettayeb, M., Al Saggaf, U.M.: Impulsive observer with predetermined finite convergence time for synchronization of fractional-order chaotic systems based on Takagi–Sugeno fuzzy model. Nonlinear Dyn. 98, 1331–1354 (2019)

    Article  Google Scholar 

  26. Sajewski, Ł.: Decentralized stabilization of descriptor fractional positive continuous-time linear systems with delays. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 482–487. IEEE (2017)

  27. Kaczorek, T.: Stabilization of fractional positive continuous-time linear systems with delays in sectors of left half complex plane by state-feedbacks. Control Cybern. 39(3), 783–795 (2010)

    MathSciNet  Google Scholar 

  28. Mahmoudabadi, P., Tavakoli-Kakhki, M.: Improved stability criteria for nonlinear fractional order fuzzy systems with time-varying delay. Soft Comput. 26(9), 4215–4226 (2022)

    Article  Google Scholar 

  29. Shen, J., Lam, J.: Stability and performance analysis for positive fractional-order systems with time-varying delays. IEEE Trans. Autom. Control 61(9), 2676–2681 (2015)

    Article  MathSciNet  Google Scholar 

  30. Li, Y., Li, J.: Decentralized stabilization of fractional order TS fuzzy interconnected systems with multiple time delays. J. Intell. Fuzzy Syst. 30(1), 319–331 (2016)

    Article  MathSciNet  Google Scholar 

  31. Liu, H., Pan, Y., Cao, J., Zhou, Y., Wang, H.: Positivity and stability analysis for fractional-order delayed systems: a T–S fuzzy model approach. IEEE Trans. Fuzzy Syst. 29(4), 927–939 (2020)

    Article  Google Scholar 

  32. Lee, C.-C.: Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans. Syst. Man Cybern. 20(2), 404–418 (1990)

    Article  MathSciNet  Google Scholar 

  33. Palm, R., Driankov, D., Hellendoorn, H.: Model Based Fuzzy Control: Fuzzy Gain Schedulers and Sliding Mode Fuzzy Controllers. Springer Science & Business Media, Berlin (1997)

    Book  Google Scholar 

  34. Bai, Z., Li, S., Liu, H.: Composite observer-based adaptive event-triggered backstepping control for fractional-order nonlinear systems with input constraints. Math. Methods Appl. Sci. 46, 16415–16433 (2022)

    Article  MathSciNet  Google Scholar 

  35. Trigeassou, J.-C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91(3), 437–445 (2011)

    Article  Google Scholar 

  36. Ma, X.-J., Sun, Z.-Q., He, Y.-Y.: Analysis and design of fuzzy controller and fuzzy observer. IEEE Trans. Fuzzy Syst. 6(1), 41–51 (1998)

    Article  Google Scholar 

  37. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  38. Cao, Y.-Y., Frank, P.M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Trans. Fuzzy Syst. 8(2), 200–211 (2000)

    Article  Google Scholar 

  39. Hua, C., Wu, S., Guan, X.: Stabilization of T–S fuzzy system with time delay under sampled-data control using a new looped-functional. IEEE Trans. Fuzzy Syst. 28(2), 400–407 (2019)

    Article  Google Scholar 

  40. Gassara, H., Hajjaji, A.E., Chaabane, M.: Robust \({H}\infty\) control for T–S fuzzy systems with time-varying delay. Int. J. Syst. Sci. 41(12), 1481–1491 (2010)

    Article  MathSciNet  Google Scholar 

  41. Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: The LMI control toolbox. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 3, pp. 2038–2041. IEEE (1994)

Download references

Acknowledgements

This work was supported by the Innovation Project of Guangxi Graduate Education (YCSW2023253) and the National Natural Science Foundation of China (12261009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, X. Stabilization of Fractional-Order T–S Fuzzy Systems with Time Delays via an \(H_\infty\) Performance Model. Int. J. Fuzzy Syst. (2024). https://doi.org/10.1007/s40815-023-01667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40815-023-01667-y

Keywords

Navigation