Skip to main content
Log in

Event-Based Adaptive Fuzzy Asymptotic Tracking Control of Quadrotor Unmanned Aerial Vehicle with Obstacle Avoidance

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article addresses the trajectory tracking control for quadrotor unmanned aerial vehicle (QUAV) with unknown external disturbances and system uncertainties. Dividing the QUAV into position subsystem and attitude subsystem, a novel adaptive fuzzy event-triggered trajectory tracking control is developed considering obstacle avoidance. An artificial potential function is incorporated into the control design to avoid obstacles, and the control algorithm is updated in an aperiodic form under the event-trigger mechanism with a relative threshold. In addition, compensating terms are introduced to counteract the effects caused by the uncertain dynamics of the QUAV and the event-triggered mechanism, such that the asymptotic trajectory tracking control of the QUAV is successfully achieved. Simulation results are provided to demonstrate the effectiveness of the presented control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Ampatzidis, Y., Partel, V., Costa, L.: Agroview: cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Comput. Electron. Agric. 174, 105457 (2020)

    Article  Google Scholar 

  2. Zhu, J.S., Sun, K., Jia, S., Li, Q.Q., Hou, X.X., Lin, W.D., Liu, B.Z., Qiu, G.P.: Urban traffic density estimation based on ultrahigh-resolution UAV video and deep neural network. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11(12), 4968–4981 (2018)

    Article  Google Scholar 

  3. Samad, T., Bay, J.S., Godbole, D.: Network-centric systems for military operations in urban terrain: the role of UAVs. Proc. IEEE 95(1), 92–107 (2007)

    Article  Google Scholar 

  4. Mader, D., Blaskow, R., Westfeld, P., Weller, C.: Potential of UAV-based laser scanner and multispectral camera data in building inspection. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 41(B1), 1135–1142 (2016)

    Article  Google Scholar 

  5. Antonio-Toledo, M.E., Sanchez, E.N., Alanis, A.Y., Flrez, J.A., Perez-Cisneros, M.A.: Real-time integral backstepping with sliding mode control for a quadrotor UAV. IFAC-PapersOnLine. 51(13), 549–554 (2018)

    Article  Google Scholar 

  6. Zuo, Z.Y.: Adaptive trajectory tracking control design with command filtered compensation for a quadrotor. J. Vib. Control 19(1), 94–108 (2013)

    Article  MathSciNet  Google Scholar 

  7. Choi, Y.C., Ahn, H.S.: Nonlinear control of quadrotor for point tracking: actual implementation and experimental tests. IEEE Trans. Mechatron. 20(3), 1179–1192 (2015)

    Article  Google Scholar 

  8. Islam, M., Okasha, M., Sulaeman, E.: A model predictive control (MPC) approach on unit quaternion orientation based quadrotor for trajectory tracking. Int. J. Control Autom. Syst. 17, 2819–832 (2019)

    Article  Google Scholar 

  9. Zhang, Y., Chen, Z.Q., Sun, M.W.: Trajectory tracking control for a quadrotor unmanned aerial vehicle based on dynamic surface active disturbance rejection control. Trans. Inst. Meas. Control. 42(12), 2198–2205 (2020)

    Article  Google Scholar 

  10. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Networks Learn. Syst. 16(1), 195–202 (2005)

    Article  Google Scholar 

  11. Li, T.S., Wang, D., Feng, G., Tong, S.C.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B 40(13), 915–927 (2010)

    Google Scholar 

  12. Tong, S.C., Wang, T., Li, Y.M., Zhang, H.G.: Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Cybern. 44(6), 910–921 (2014)

    Article  Google Scholar 

  13. Li, Y.M., Liu, Y.J., Tong, S.C.: Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints. IEEE Trans. Neural Networks Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3051030

    Article  Google Scholar 

  14. Lee, C.T., Tsai, C.C.: Nonlinear adaptive aggressive control using recurrent neural networks for a small scale helicopter. Mechatronics 20(4), 474–484 (2010)

    Article  Google Scholar 

  15. Ariffanan, M., Basri, M.: Trajectory tracking control of autonomous quadrotor helicopter using robust neural adaptive backstepping approach. J. Aerosp. Eng. 31(2), 1–15 (2018)

    Google Scholar 

  16. Wang, N., Wang, Y.: Fuzzy uncertainty observer based Adaptive dynamic surface control for trajectory tracking of a quadrotor. Acta Autom. Sin. 44(4), 685–695 (2018)

    MATH  Google Scholar 

  17. Jin, X.Z., He, T., Wu, X.M., Wang, H., Chi, J.: Robust adaptive neural network-based compensation control of a class of quadrotor aircrafts. J. Franklin Inst. 357(17), 12241–12263 (2020)

    Article  MathSciNet  Google Scholar 

  18. Peng, Z.H., Wang, J., Wang, D.: Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Ind. Electron. 64(5), 3831–3839 (2017)

    Article  Google Scholar 

  19. Li, T.S., Zhao, R., Chen, C.L.P., Fang, L.Y., Liu, C.: Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 48(11), 3243–3253 (2018)

    Article  Google Scholar 

  20. Liu, L., Wang, D., Peng, Z.H., Han, Q.L.: Distributed path following of multiple under-actuated autonomous surface vehicles based on data-driven neural predictors via integral concurrent learning. IEEE Trans. Neural Networks Learn. Syst. 32(12), 5334–44 (2021)

    Article  MathSciNet  Google Scholar 

  21. Sahoo, A., Xu, H., Jagannathan, S.: Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Trans. Neural Networks Learn. Syst. 27(3), 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  22. Li, Y.X., Yang, G.H.: Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications. IEEE Trans. Neural Networks Learn. Syst. 29(12), 6242–6251 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, Y.X., Tong, S.C., Yang, G.H.: Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybern. 50(7), 3104–3112 (2020)

    Article  Google Scholar 

  24. Szanto, N., Narayanan, V., Jagannathan, S.: Event-Sampled Control of Quadrotor Unmanned Aerial Vehicle Using Neural Networks. American Control Conference (ACC), Seattle, WA, pp. 2956–2961 (2017)

  25. Shao, S.Y., Chen, M., Hou, J., Zhao, Q.: Event-triggered-based discrete-time neural control for a quadrotor UAV using disturbance observer. IEEE/ASME Trans. Mechatron. 26(2), 689–699 (2021)

    Article  Google Scholar 

  26. Wang, N., Wang, Y., Er, M.J.: Adaptive dynamic surface trajectory tracking control of a quadrotor unmanned aerial vehicle. Control Theory Appl. 34(9), 1185–1194 (2017)

    MATH  Google Scholar 

  27. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Networks 3(5), 807–814 (1992)

    Article  Google Scholar 

  28. Xing, L.T., Wen, C.Y., Liu, Z.T., Su, H.Y., Cai, J.P.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017)

    Article  MathSciNet  Google Scholar 

  29. Khalil, H.K.: Nonlinear Systems, 3rd edn. Upper Saddle River, Prentice-Hall (2002)

    MATH  Google Scholar 

  30. Gu, N., Wang, D., Peng, Z.H., Liu, L.: Observer-based finite-time control for distributed path maneuvering of underactuated unmanned surface vehicles with collision avoidance and connectivity preservation. IEEE Trans. Syst. Man Cybern. Syst. 51(8), 5105–5115 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported in part by Natural Science Foundation of Liaoning Province (2019-BS-119), Liaoning Revitalization Talents Program (XLYC2007014), and Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education (202109244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Yu, Y. & Wang, W. Event-Based Adaptive Fuzzy Asymptotic Tracking Control of Quadrotor Unmanned Aerial Vehicle with Obstacle Avoidance. Int. J. Fuzzy Syst. 24, 3174–3188 (2022). https://doi.org/10.1007/s40815-022-01330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01330-y

Keywords

Navigation