Skip to main content
Log in

Regional Water Resource Security in China Based on a New Fuzzy Method with Combination Weighting

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

As one of the important natural resources, water resources are related to the future survival and development of human beings. In recent years, the problem of water resources security has become more and more prominent, and it is urgent to study water resources security. Taking 30 provinces and cities in China as an example, this paper constructs a water resources security index system from three aspects of resource supply, social economy and ecological environment, and innovatively proposes a new evaluation method. Specifically, considering the influence of subjective and objective factors on the weighting of indicators, the best–worst method (BWM) and the criteria importance through intercriteria correlation (CRITIC) method are used to determine the subjective and objective weights of each indicator, and the two weights are unified in combination with the principle of maximizing variance. After that, the combined weight was applied to the technique for order preference by similarity to ideal solution (TOPSIS) method, and a new fuzzy multiple criteria decision-making (MCDM) method of combined weighting was finally developed to evaluate the water security status in China. This avoids the error of the traditional single-weight method evaluation to a certain extent, and also conducts other relevant empirical analysis. The research method developed in this paper provides a new idea for dealing with multi-criteria optimization problems in complex systems, and the research results provide a theoretical basis for ensuring regional water resources security and promoting coordinated development among regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Didovets, I., Lobanova, A., Bronstert, A., Snizhko, S., Maule, C., Krysanova, V.: Assessment of climate change impacts on water resources in three representative Ukrainian catchments using eco-hydrological modelling. Water 9(3), 204 (2017)

    Article  Google Scholar 

  2. Gunda, T., Hess, D., Hornberger, G.M., Worland, S.: Water security in practice: the quantity–quality–society nexus. Water Secur. 6, 100022 (2019)

    Article  Google Scholar 

  3. Huang, Z., Liu, J., Mei, C., Wang, H., Shao, W.: Water security evaluation based on comprehensive index in Jing-Jin-Ji District, China. Water Supply 20(7), 2698–2714 (2020)

    Article  Google Scholar 

  4. Tang, L., Zhang, W., Liu, Z., Qi, Y.: Evaluation of water security based on capacity for socio-economic regulation. Water Supply 21(3), 1036–1049 (2021)

    Article  Google Scholar 

  5. Yao, J., Wang, P., Wang, G., Shrestha, S., Xue, B., Sun, W.: Establishing a time series trend structure model to mine potential hydrological information from hydrometeorological time series data. Sci. Total Environ. 698, 134227 (2020)

    Article  Google Scholar 

  6. Grey, D., Sadoff, C.W.: Sink or swim? Water security for growth and development. Water Policy 9(6), 545–571 (2007)

    Article  Google Scholar 

  7. Bin, O.U., Shuyan, F.U., Yu, W., Liping, W.: The comprehensive evaluation of rural drinking water security in Yunnan Province. Procedia Earth Planet. Sci. 5, 155–158 (2012)

    Article  Google Scholar 

  8. Li, X.S., Peng, Z.Y., Li, T.T.: An evaluation index system of water security in China based on macroeconomic data from 2000 to 2012. IOP Conf. Ser. Earth Environ. Sci. 39, 012045 (2016)

    Article  Google Scholar 

  9. Liu, K.K., Li, C.H., Cai, Y.P., Xu, M., Xia, X.H.: Comprehensive evaluation of water resources security in the Yellow River Basin based on a fuzzy multi-attribute decision analysis approach. Hydrol. Earth Syst. Sci. Discuss. 11(1), 371–410 (2014)

    Google Scholar 

  10. Su, Y., Gao, W., Guan, D.: Integrated assessment and scenarios simulation of water security system in Japan. Sci. Total Environ. 671, 1269–1281 (2019)

    Article  Google Scholar 

  11. Shao, W., Liu, H., Wang, H., Liu, J., Yan, D., Li, W., Zhou, J., Wang, H.: Evaluation of regional water security in China and recommendations for counter measures. Arab. J. Geosci. 13(3), 107 (2020)

    Article  Google Scholar 

  12. Wang, X., Chen, Y., Li, Z., Fang, G., Wang, Y.: Development and utilization of water resources and assessment of water security in Central Asia. Agric. Water Manag. 240, 106297 (2020)

    Article  Google Scholar 

  13. Baradaran, V., Ghorbani, E.: Development of fuzzy exploratory factor analysis for designing an e-learning service quality assessment model. Int. J. Fuzzy Syst. 22(6), 1772–1785 (2020)

    Article  Google Scholar 

  14. Lin, C.M., Huynh, T.T.: Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using TOPSIS multiple attribute decision-making method. Int. J. Fuzzy Syst. 20(6), 1839–1856 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fei, L., Deng, Y., Hu, Y.: Hu: DS-VIKOR: a new multi-criteria decision-making method for supplier selection. Int. J. Fuzzy Syst. 21(1), 157–175 (2019)

    Article  MathSciNet  Google Scholar 

  16. Zavadskas, E.K., Turskis, Z., Tamošaitiene, J.: Risk assessment of construction projects. J. Civ. Eng. Manag. 16(1), 33–46 (2010)

    Article  Google Scholar 

  17. Mayag, B., Grabisch, M., Labreuche, C.: A characterization of the 2-additive Choquet integral through cardinal information. Fuzzy Sets Syst. 184(1), 84–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rezaei, J.: Best–worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Article  Google Scholar 

  19. Asadabadi, M.R., Chang, E., Zwikael, O., Saberi, M., Sharpe, K.: Hidden fuzzy information: requirement specification and measurement of project provider performance using the best–worst method. Fuzzy Sets Syst. 383, 127–145 (2020)

    Article  MathSciNet  Google Scholar 

  20. Keshavarz Ghorabaee, M.K., Zavadskas, E.K., Amiri, M., Esmaeili, A.: Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets. J. Clean. Prod. 137, 213–229 (2016)

    Article  Google Scholar 

  21. Tuş, A., Aytaç Adalı, E.A.: The new combination with CRITIC and WASPAS methods for the time and attendance software selection problem. OPSEARCH 56(2), 528–538 (2019)

    Article  MATH  Google Scholar 

  22. Kolagar, M.: Adherence to urban agriculture in order to reach sustainable cities; a BWM–WASPAS approach. Smart Cities 2(1), 31–45 (2019)

    Article  MathSciNet  Google Scholar 

  23. Su, W., Zhang, L., Zeng, S., Jin, H.: A fuzzy-social network multi-criteria group decision-making framework for selection of renewable energy project: a case of China. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01193-9

    Article  Google Scholar 

  24. Akram, M., Adeel, A.: TOPSIS approach for MAGDM based on interval-valued hesitant fuzzy N-soft environment. Int. J. Fuzzy Syst. 21(3), 993–1009 (2019)

    Article  Google Scholar 

  25. Alazemi, F.K.A., Ariffin, M.K.A.B.M., Mustapha, F.B., Supeni, E.E.B.: A new fuzzy TOPSIS-based machine learning framework for minimizing completion time in supply chains. Int. J. Fuzzy Syst. (2022). https://doi.org/10.1007/s40815-021-01226-3

    Article  Google Scholar 

  26. Samanlioglu, F., Taskaya, Y.E., Gulen, U.C., Cokcan, O.: A fuzzy AHP–TOPSIS-based group decision-making approach to IT personnel selection. Int. J. Fuzzy Syst. 20(5), 1576–1591 (2018)

    Article  Google Scholar 

  27. Gupta, P., Mehlawat, M.K., Grover, N.: A generalized TOPSIS method for intuitionistic fuzzy multiple attribute group decision making considering different scenarios of attributes weight information. Int. J. Fuzzy Syst. 21(2), 369–387 (2019)

    Article  Google Scholar 

  28. Shaverdi, M., Ramezani, I., Tahmasebi, R., Rostamy, A.A.A.: Combining fuzzy AHP and fuzzy TOPSIS with financial ratios to design a novel performance evaluation model. Int. J. Fuzzy Syst. 18(2), 248–262 (2016)

    Article  Google Scholar 

  29. Chen, T.Y., Li, C.H.: Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Inf. Sci. 180(21), 4207–4222 (2010)

    Article  Google Scholar 

  30. Sun, L.Y., Miao, C.L., Yang, L.: Ecological–economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 73, 554–558 (2017)

    Article  Google Scholar 

  31. Huang, W., Shuai, B., Sun, Y., Wang, Y., Antwi, E.: Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: the China case. Transp. Res. A 111, 292–303 (2018)

    Google Scholar 

  32. Gu, T., Ren, P., Jin, M., Wang, H.: Tourism destination competitiveness evaluation in Sichuan Province using TOPSIS model based on information entropy weights. Discrete Contin. Dyn. Syst 12(4&5), 771 (2019)

    MathSciNet  Google Scholar 

  33. García, F., Guijarro, F., Moya, I.: A goal programming approach to estimating performance weights for ranking firms. Comput. Oper. Res. 37(9), 1597–1609 (2010)

    Article  MATH  Google Scholar 

  34. Chen, P.: Effects of the entropy weight on TOPSIS. Expert Syst. Appl. 168, 114186 (2021)

    Article  Google Scholar 

  35. Deng, F., Li, Y., Lin, H., Miao, J., Liang, X.: A BWM–TOPSIS hazardous waste inventory safety risk evaluation. Int. J. Environ. Res. Public Health 17(16), 5765 (2020)

    Article  Google Scholar 

  36. Gupta, H.: Assessing organizations performance on the basis of GHRM practices using BWM and fuzzy TOPSIS. J. Environ. Manag. 226, 201–216 (2018)

    Article  Google Scholar 

  37. Tu, Y., Chen, K., Wang, H., Li, Z.M.: Regional water resources security evaluation based on a hybrid fuzzy BWM–TOPSIS method. Int. J. Environ. Res. Public Health 17(14), 4987 (2020)

    Article  Google Scholar 

  38. Liu, H., Jia, Y., Niu, C., Gan, Y., Xu, F.: Evaluation of regional water security in China based on dualistic water cycle theory. Water Policy 20(3), 510–529 (2018)

    Article  Google Scholar 

  39. Yao, J., Wang, G., Xue, B., Xie, G., Peng, Y.: Identification of regional water security issues in China, using a novel water security comprehensive evaluation model. Hydrol. Res. 51(5), 854–866 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Social Science Foundation of China (Grant No. 21CTJ024), The Humanities and Social Sciences Program of the Ministry of Education (Grant No. 20YJC790193), National Natural Science Foundation of China (Grant No. 71934001), and Higher Education Institutions in Anhui Province of China (Grant No. KJ2020A0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Tao, W. & Song, M. Regional Water Resource Security in China Based on a New Fuzzy Method with Combination Weighting. Int. J. Fuzzy Syst. 24, 3584–3601 (2022). https://doi.org/10.1007/s40815-022-01298-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01298-9

Keywords

Navigation