Skip to main content
Log in

Course-Grained Multi-scale EMD Based Fuzzy Entropy for Multi-target Classification During Simultaneous SSVEP-RSVP Hybrid BCI Paradigm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Hybridization in brain-computer interface (BCI) is an active research assessed by integrating more than two modalities to control multiple user commands and enhance the BCI performance. However, evaluation of these hybrid modalities is substantially challenging which necessitates robust techniques that can efficiently analyze the underlying dynamics of the brain signal. Fuzzy entropy based approaches are the objective measurements of evaluating the dynamic electroencephalography (EEG) complexity reflecting its ability to adapt to the variabilities of the brain. In this study, we proposed an empirical mode decomposition (EMD) featured fuzzy entropy method by applying coarse-graining to the time series signal at a multi-scale level (EMFuzzyEn) to efficiently discriminate the target and non-target events, and improve classification performance during simultaneous steady-state visual evoked potential (SSVEP) and rapid serial visual presentation (RSVP) BCI system framework. The proposed hybrid BCI framework with applied canonical correlation analysis (CCA) and EMFuzzyEn algorithm to the SSVEP and RSVP classifications achieved an offline accuracy of 87.41% for 12-channel combination and an online accuracy of 84.69% for 2-channel combination. The results demonstrated that the proposed algorithm enhanced the BCI performance by 5.85% (offline) and 6.78% (online) compared to our previous ERP-based classification results. Further, the EMFuzzyEn algorithm achieved highest classification accuracy across all channel combinations compared to the multi-scale fuzzy (MFuzzyEn) and non-fuzzy (ShEn, AppEn, CondEn) entropy algorithms. Overall, our empirical results confirmed that the proposed EMFuzzyEn algorithm significantly increased the EEG complexity during target tasks thereby enhancing the discrimination between target and non-target tasks, which might be a potential indicator to measure the brain dynamics and enhance the BCI performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  2. Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot 25, 614–627 (2009)

    Article  Google Scholar 

  3. Placidi, G., Petracca, A., Spezialetti, M., Iacoviello, D.: A modular framework for EEG web based binary brain computer interfaces to recover communication abilities in impaired people. J. Med. Syst 40, 34–47 (2016)

    Article  Google Scholar 

  4. Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., McMorland, A.J., Velliste, M., Boninger, M.L., Schwartz, A.B.: High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013)

    Article  Google Scholar 

  5. Hortal, E., Planelles, D., Costa, A., Iánez, E., Úbeda, A., Azorín, J.M., Fernández, E.: SVM-based brain-machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 151, 116 (2015)

    Article  Google Scholar 

  6. Su, Y., Qi, Y., Luo, J.X., Wu, B., Yang, F., Li, Y., et al.: A hybrid brain–computer interface control strategy in a virtual environment. J. Zhejiang Univ. Sci. C 12, 351–361 (2011). https://doi.org/10.1631/jzus.C1000208

    Article  Google Scholar 

  7. Teplan, M.: Fundamentals of EEG measurement. IEEE Meas. Sci. Rev. 2, 1–11 (2002)

    Google Scholar 

  8. Ignas, M., Robertas, D.: A prototype SSVEP based real time BCI gaming system. Comput. Intell. Neurosci. 2016, 15 (2016)

    Google Scholar 

  9. Chen, S.C., Chen, Y.J., Zaeni, I.A.E., et al.: A single-channel SSVEP-based BCI with a fuzzy feature threshold algorithm in a maze game. Int. J. Fuzzy Syst. 19, 553–565 (2017). https://doi.org/10.1007/s40815-016-0289-3

    Article  Google Scholar 

  10. Orhan, U., Hild, K.E., Erdogmus, D., Roark, B., Oken, B., Fried-Oken, M.: RSVP keyboard: an EEG based typing interface. Proc IEEE Int Conf Acoust Speech Signal Process (2012). https://doi.org/10.1109/ICASSP.2012.6287966

    Article  Google Scholar 

  11. Li, J., Ji, H.F., Cao, L., Zang, D., Gu, R., Xia, B., et al.: Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Int. J. Neural Syst. 24, 1450014 (2014). https://doi.org/10.1142/S0129065714500142

    Article  Google Scholar 

  12. Hong, K.S., Khan, M.J.: Hybrid brain–computer interface techniques for improved classification accuracy and increased number of commands: a review. Front. Neurorobot. 11, 35 (2017)

    Article  Google Scholar 

  13. D. Sandeep Vara Sankar and L. -W. Ko. Evaluation of Fatigue and Attention Levels in Multi-target Scenario using CNN. 2020 International Computer Symposium (ICS), pp. 247–251 (2020)

  14. Claudia, L., Hernandez, M.E., Weyhenmeyer, J., Sejnowski, T.J., Poizner, H.: Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals. Front. Neurol. 4, 200 (2013)

    Google Scholar 

  15. Nakanishi, M., Wang, Y., Wang, Y.-T., Jung, T.-P.: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials. PLoS ONE 10(10), e0140703 (2015). https://doi.org/10.1371/journal.pone.0140703

    Article  Google Scholar 

  16. Azami, H., Li, P., Arnold, S.E., Escudero, J., Humeau-Heurtier, A.: Fuzzy entropy metrics for the analysis of biomedical signals: assessment and comparison. IEEE Access 7, 104833–104847 (2019). https://doi.org/10.1109/ACCESS.2019.2930625

    Article  Google Scholar 

  17. Cao, Z., Lai, K.-L., Lin, C.-T., Chuang, C.-H., Chou, C.-C., Wang, S.-J.: Exploring resting-state EEG complexity before migraine attacks. Cephalalgia 38(7), 1296–1306 (2018)

    Article  Google Scholar 

  18. Cao, Z., et al.: Extraction of SSVEPs-based inherent fuzzy entropy using a wearable headband EEG in migraine patients. IEEE Trans. Fuzzy Syst. 28(1), 14–27 (2020). https://doi.org/10.1109/TFUZZ.2019.2905823

    Article  Google Scholar 

  19. Dauwels, J., Vialatte, F., Musha, T., Cichocki, A.: A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 49(1), 668–693 (2010)

    Article  Google Scholar 

  20. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol 278, H2039–H2049 (2000)

    Article  Google Scholar 

  21. González, C., Jensen, E., Gambús, P., Vallverdú, M.: Entropy Measures as descriptors to identify Apneas in Rheoencephalographic signals. Entropy 21(6), 605 (2019)

    Article  MathSciNet  Google Scholar 

  22. Chen, W., Wang, Z., Xie, H., Yu, W.: Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 15(2), 266–272 (2007). https://doi.org/10.1109/TNSRE.2007.897025

    Article  Google Scholar 

  23. Cao, Z., Lin, C.-T.: Inherent fuzzy entropy for the improvement of EEG complexity evaluation. IEEE Trans. Fuzzy Syst. 26(2), 1032–1035 (2018)

    Article  Google Scholar 

  24. Cao, Z., Ding, W., Wang, Y.-K., Hussain, F.K., Al-Jumaily, A., Lin, C.-T.: Effects of repetitive ssveps on eeg complexity using multiscale inherent fuzzy entropy. Neurocomputing (2019). https://doi.org/10.1016/j.neucom.2018.08.091

    Article  Google Scholar 

  25. Hu, K., Ivanov, P.C., Chen, Z., Carpena, P., Stanley, H.E.: Effect of trends on detrended fluctuation analysis. Phys. Rev. E. 64, 011114 (2001)

    Article  Google Scholar 

  26. D. S. V. Sankar and L. P. Roy. Principal component analysis (PCA) approach to segment primary components from pathological phonocardiogram. International Conference on Communication and Signal Processing, pp. 910–914 (2014)

  27. Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Roy. Soc. London A 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  28. Ko, L.-W., et al.: SSVEP-assisted RSVP brain-computer interface paradigm for multi-target classification. J. Neural Eng. (2020). https://doi.org/10.1088/1741-2552/abd1c0

    Article  Google Scholar 

  29. Azadeh, M., Patrick, F., Pierre, B.: Trend filtering via empirical mode decompositions. Comput. Stat. Data Anal. 58, 114–126 (2013). https://doi.org/10.1016/j.csda.2011.05.015

    Article  MathSciNet  MATH  Google Scholar 

  30. Delorme, A., Makeig, S.: Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  31. Hong, K.S., Khan, M.J., Hong, M.J.: Feature extraction and classification methods for hybrid fNIRS-EEG brain-computer interfaces. Front. Hum. Neurosci. 12, 246 (2018)

    Article  Google Scholar 

  32. Kalunga, E., Djouani, K., Hamam, Y., Chevallier, S., and Monacelli, E. SSVEP enhancement based on Canonical Correlation Analysis to improve BCI performances. 2013 Africon IEEE, pp. 1–5 (2013)

  33. Li, F., Liu, T., Wang, F., et al.: Relationships between the resting-state network and the P3: evidence from a scalp EEG study. Sci Rep 5, 15129 (2015). https://doi.org/10.1038/srep15129

    Article  Google Scholar 

  34. Barbosh, M., Singh, P., Sadhu, A.: Empirical mode decomposition and its variants: a review with applications in structural health monitoring. Smart Mater. Struct. (2020). https://doi.org/10.1088/1361-665X/aba539

    Article  Google Scholar 

  35. Bernhard, S., John, P., and Thomas, H. Logistic Regression for Single Trial EEG Classification. Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, MIT Press, pp.1377–1384 (2007)

  36. Sha’Abani, M.N.A.H., Fuad, N., Jamal, N., Ismail, M.: kNN and SVM classification for EEG: a review. Springer Singapore, Singapore (2020)

    Google Scholar 

  37. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  38. Manyakov, N., Chumerin, N., Combaz, A., Van, H., M.: Comparison of classification methods for P300 brain-computer interface on disabled subjects. Comput. Intell. Neurosci. 2011, 519868 (2011). https://doi.org/10.1155/2011/519868

    Article  Google Scholar 

  39. Sun, S., Zhang, C., Zhang, D.: An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recogn. Lett. 28, 2157–2163 (2007). https://doi.org/10.1016/j.patrec.2007.06.018

    Article  Google Scholar 

  40. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Mach. Learn. 42, 287–320 (2001). https://doi.org/10.1023/A:1007618119488

    Article  MATH  Google Scholar 

  41. Koul, A., Becchio, C., Cavallo, A.: Cross-validation approaches for replicability in psychology. Front. Psychol. 9, 1117 (2018)

    Article  Google Scholar 

  42. Vanegas, M.I., Blangero, A., Kelly, S.P.: Exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials. J. Neural Eng. 10(3), 036003 (2013)

    Article  Google Scholar 

  43. Madhale Jadav, G., Lerga, J., Štajduhar, I.: Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy. EURASIP J. Adv. Signal Process 2020, 7 (2020)

    Article  Google Scholar 

  44. Lin, C.Y., Lu, C.F., Lu, H.M., et al.: Using fuzzy classifier in ensemble method for motor imagery electroencephalography classification. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-021-01108-8

    Article  Google Scholar 

  45. Gazzaniga, M., Doron, K., Funk, C.: Looking toward the future: perspectives on examining the architecture and function of the human brain as a complex system. Cognit. Neurosci. IV 15, 1245–1252 (2010)

    Google Scholar 

  46. Raghu, S., Sriraam, N., Kumar, G.P., Hegde, A.S.: A novel approach for real-time recognition of epileptic seizures using minimum variance modified fuzzy entropy. IEEE Trans. Biomed. Eng. 65(11), 2612–2621 (2018). https://doi.org/10.1109/TBME.2018.2810942

    Article  Google Scholar 

  47. Mingai, L., Ruotu, W., Jinfu, Y., Lijuan, D.: An improved refined composite multivariate multiscale fuzzy entropy method for MI-EEG feature extraction. Comput. Intell. Neurosci. (2019). https://doi.org/10.1155/2019/7529572

    Article  Google Scholar 

  48. Kosmyna, N., Lindgren, J.T., Lécuyer, A.: Attending to visual stimuli versus performing visual imagery as a control strategy for EEG-based brain-computer interfaces. Sci. Rep. 8, 13222 (2018). https://doi.org/10.1038/s41598-018-31472-9

    Article  Google Scholar 

  49. Qi, Z.: An improved similarity measure for generalized trapezoidal fuzzy numbers and its application in the classification of EEG signals. Int. J. Fuzzy Syst. 23, 890–905 (2021). https://doi.org/10.1007/s40815-020-01043-0

    Article  Google Scholar 

  50. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28(4), 2591–2593 (1983)

    Article  Google Scholar 

  51. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  Google Scholar 

  52. Kosko, B.: Fuzzy entropy and conditioning. Inf. Sci. 40(2), 165–174 (1986)

    Article  MathSciNet  Google Scholar 

  53. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

The current study was supported in part by the Ministry of Science and Technology (MOST) under Grants 108-2221-E-009-045-MY3, 110-2321-B-010-005, and 111-2321-B-A49-004, and supported in part by the Center for Intelligent Drug Systems and Smart Bio-Devices (IDS^2B) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the National Yang Ming Chiao Tung University (NYCU) and Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Wei Ko.

Appendices

Appendix A

Theorem

For a given time series \({\{X}_{i }:1\le i\le N\},\) given \(d, n\) and\(r\), the entropy of the sequence when fuzziness is incorporated is\(\mathrm{FuzzyEn}=\mathrm{ln}({\Phi }_{\left\{\mathrm{d}+1\right\}})-\mathrm{ln}({\Phi }_{\left\{\mathrm{d}+1\right\}})\).

Proof

Let \({A}_{ji}\) denote the number of vectors of \(d\) dimension \({Z}_{j\{d\}}\) within \(r\) of \({Z}_{i\{d\}}\) and \({B}_{ji}\) denote the number of vectors of \(d+1\) dimension \({Z}_{j\{d+1\}}\) within \(r\) of \({Z}_{i\{d+1\}}\).

Given \(n\) and \(r\), the probability of difference between any two vectors \({Z}_{j\{d\}}\) and \({Z}_{i\{d\}}\) that lies within \(r\) denoted by \({D}_{ji\{d\}}\) is defined as \({D}_{ji\left\{d\right\}}\) = \({A}_{ji}/(N-d)\).

Similarly, the probability of difference between any two vectors \({Z}_{j\{d+1\}}\) and \({Z}_{i\{d+1\}}\) that lies within \(r\) denoted by \({D}_{ji\left\{d+1\right\}}\) is defined as \({D}_{ji\left\{d+1\right\}}\) = \({B}_{ji}/(N-d+1)\).

Then, from the work of Grassberger et al. [50], the function \({\Phi }_{\left\{\mathrm{d}\right\}}\) and \({\Phi }_{\left\{\mathrm{d}+1\right\}}\) are called the average of the natural logarithms of functions \({D}_{ji\left\{d\right\}}\) and \({D}_{ji\left\{d+1\right\}}\) which are denoted by

$$\Phi _{{\left\{ d \right\}}} = \frac{1}{{N - d}}\sum\limits_{{j = 1}}^{{N - d}} {{\text{ln}}} [D_{{ji\left\{ d \right\}}} ]$$
$$\Phi _{{\left\{ {d + 1} \right\}}} = \frac{1}{{N - d + 1}}\sum\limits_{{j = 1}}^{{N - d + 1}} {{\text{ln}}} [D_{{ji\left\{ {d + 1} \right\}}} ]$$

With sufficiently large \(N\) value the above equations can be approximated to

$$\Phi _{{\left\{ d \right\}}} = \frac{1}{{N - d}}\sum\limits_{{j = 1}}^{{N - d}} {{\text{ln}}} [D_{{ji\left\{ d \right\}}} ]$$
$$\Phi _{{\left\{ {d + 1} \right\}}} = \frac{1}{{N - d}}\sum\limits_{{j = 1}}^{{N - d}} {{\text{ln}}} [D_{{ji\left\{ {d + 1} \right\}}} ]$$

From Pincus work [51], the calculation of difference between \({\Phi }_{\left\{\mathrm{d}\right\}}\) and \({\Phi }_{\left\{\mathrm{d}+1\right\}}\) for fixed parameters \(d, r\) and \(N\) provide inherent measure of regularity and complexity, which is often named as entropy.

$$\begin{array}{*{20}l} {{\text{Entropy}}} \hfill & { = \Phi _{{\left\{ d \right\}}} - \Phi _{{\left\{ {d + 1} \right\}}} } \hfill \\ {} \hfill & { = \frac{1}{{N - d}}\sum\limits_{{{\text{j}} = 1}}^{{N - d}} {\left( {\ln \left[ {D_{{ji\left\{ d \right\}}} } \right] - \ln \left[ {D_{{ji\left\{ {d + 1} \right\}}} } \right]} \right)} } \hfill \\ {} \hfill & { = {\text{Avg}}\left( { - \ln \left( {\frac{{B_{{ji}} }}{{A_{{ji}} }}} \right)} \right)} \hfill \\ \end{array}$$

Similarly, the equation \(\mathrm{FuzzyEn}=\mathrm{ln}({\Phi }_{\left\{\mathrm{d}+1\right\}})-\mathrm{ln}({\Phi }_{\left\{\mathrm{d}+1\right\}})\) gives

$$\mathrm{FuzzyEn}= \frac{1}{\mathrm{N}-\mathrm{d}}\left\{\sum_{\mathrm{j}=1}^{\mathrm{N}-\mathrm{d}}\mathrm{ln}[{D}_{ji\left\{d\right\}}]-\mathrm{ln}{[D}_{ji\left\{d+1\right\}}]\right\}$$

that is equal to the average of the negative natural logarithm over i \(-\mathrm{ln}({{B}_{ji}/A}_{ji})\).

Hence, the ratio \({{[B}_{ji}/A}_{ji}]\) represents an entropy.

Appendix B

Pseudocode of multi-scale EMD fuzzy entropy algorithm.

2.1 Required

Preprocessed EEG signal X ϵ RN×C, N = data length, C = number of channels, τ = scale-factor, r = width and n = gradient of the fuzzy function.

2.2 Pseudocode

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diddi, S.V.S., Ko, LW. Course-Grained Multi-scale EMD Based Fuzzy Entropy for Multi-target Classification During Simultaneous SSVEP-RSVP Hybrid BCI Paradigm. Int. J. Fuzzy Syst. 24, 2157–2173 (2022). https://doi.org/10.1007/s40815-022-01268-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01268-1

Keywords

Navigation