Skip to main content
Log in

A PROMETHEE II Approach Based on Probabilistic Hesitant Fuzzy Linguistic Information with Applications to Multi-Criteria Group Decision-Making (ICSSE 2020)

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Multi-criteria group decision-making (MCGDM) problems are very common in the real world. The complexity of the problem necessitates a solution method that is more in line with the decision-making habits of decision-makers (DMs). This paper introduces a novel type of integrated linguistic information, namely, the Probabilistic Hesitant Fuzzy Linguistic Sets (PHFLSs), which combines the concepts of Hesitant Fuzzy Linguistic Sets and Probabilistic Linguistic Term Sets for solving MCGDM problems. By integrating PHFLSs into the Preference Ranking Organization Method for Enrichment Evaluations II (PROMETHEE II), a group decision-making framework is constructed to effectively generate the best decision given various evaluations from multiple DMs. More specifically, the DMs’ assessments are first developed and normalized based on PHFLSs definitions. Then the Hausdorff distance is employed to compute the distances between different PHFLSs, from which the weights of criteria are derived and then fed into PROMETHEE II for the best group decision. To demonstrate the practicality and capability of the proposed decision framework, a case study on seeking the best open-source software project is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  3. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, pp. 1378–1382 (2009)

  4. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  5. Rodríguez, R.M., Marínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20, 109–119 (2012)

    Google Scholar 

  6. Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press, Boca Raton (2013)

    Google Scholar 

  7. Wei, C.P., Zhao, N., Tang, X.J.: Operators and comparisons of hesitant fuzzy linguistic term sets. IEEE Trans. Fuzzy Syst. 22, 575–585 (2014)

    Google Scholar 

  8. Liu, X.Y., Ju, Y.B., Qu, Q.X.: Hesitant fuzzy 2-dimension linguistic term set and its application to multiple attribute group decision making. Int. J. Fuzzy Syst. 20(7), 2301–2321 (2017)

    Google Scholar 

  9. Li, W.M., Deng, X.: Multi-parameter portfolio selection model with some novel score-deviation under dual hesitant fuzzy environment. Int. J. Fuzzy Syst. 22(4), 1123–1141 (2020)

    Google Scholar 

  10. Lin, R., Zhao, X.F., Wang, H.J., Wei, G.: Hesitant fuzzy linguistic aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 36(11), 2155–2165 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Wang, J.H., Hao, J.: A new version of 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 14(3), 435–445 (2006)

    Google Scholar 

  12. Wu, Z.B., Xu, J.: Possibility distribution-based approach for MAGDM with hesitant fuzzy linguistic information. IEEE Trans. Cybern. 46(3), 694–705 (2016)

    Google Scholar 

  13. Pang, Q., Wang, H., Xu, Z.S.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016)

    Google Scholar 

  14. Wu, X.L., Liao, H.C.: An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Inf. Fusion 43, 13–26 (2018)

    Google Scholar 

  15. Yu, X.B., Chen, H., Ji, Z.: Combination of probabilistic linguistic term sets and PROMETHEE to evaluate meteorological disaster risk: case study of southeastern China. Sustainability 11(5), 1405 (2019)

    Google Scholar 

  16. Chen, Z.S., Chin, K.S., Li, Y.L., Yang, Y.: Proportional hesitant fuzzy linguistic term set for multiple criteria group decision making. Inf. Sci. 357, 61–87 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Chen, Z.S., Li, M., Kong, W.T., Chin, K.S.: Evaluation and selection of HazMat transportation alternatives: a PHFLTS and TOPSIS-integrated multi-perspective approach. Int. J. Environ. Res. Public Health 16, 4116 (2019)

    Google Scholar 

  18. Joshi, D., Beg, I., Kumar, S.: Hesitant probabilistic fuzzy linguistic sets with applications in multi-criteria group decision making problems. Mathematics 6(4), 47 (2018)

    MATH  Google Scholar 

  19. Xu, Y., Li, Y., Zheng, L.J., Cui, L., Li, S., Li, W., Cai, Y.P.: Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 207, 118222 (2020)

    Google Scholar 

  20. Kai, Z., Zhan, J.M., Wu, W.Z.: Novel fuzzy rough set models and corresponding applications to multi-criteria decision-making. Fuzzy Sets Syst. 383, 92–126 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Ho, W., Xu, X.W., Dey, P.K.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202(1), 16–24 (2010)

    MATH  Google Scholar 

  22. Velasquez, M., Hester, P.T.: An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 10(2), 56–66 (2013)

    MathSciNet  Google Scholar 

  23. Brans, J.P., Vincke, P.: A preference ranking organisation method. Manag. Sci. 31(6), 647–656 (1985)

    MATH  Google Scholar 

  24. Liu, P.D., Li, Y.: The PROMTHEE II method based on probabilistic linguistic information and their application to decision making. Informatica 29(2), 303–320 (2018)

    MathSciNet  Google Scholar 

  25. Qiao, D., Shen, K.W., Wang, J.Q., Wang, T.L.: Multi-criteria PROMETHEE method based on possibility degree with Z-numbers under uncertain linguistic environment. J. Ambient Intell. Hum. Comput. 11, 2187–2201 (2019)

    Google Scholar 

  26. Feng, F., Xu, Z.S., Fujita, H., Liang, M.Q.: Enhancing PROMETHEE method with intuitionistic fuzzy soft sets. Int. J. Intell. Syst. 35(7), 1071–1104 (2020)

    Google Scholar 

  27. Vavatsikos, A.P., Demesouka, O.E., Anagnostopoulos, K.P.: GIS-based suitability analysis using fuzzy PROMETHEE. J. Environ. Plan. Manag. 63(4), 604–628 (2020)

    Google Scholar 

  28. Hwang, C.L., Yoon, K.: Multiple attribute decision making. Lect. Notes Econ. Math. Syst. 404(4), 287–288 (1981)

    Google Scholar 

  29. Lei, F., Wei, G.W., Gao, H., Wu, J., Wei, C.: Topsis method for developing supplier selection with probabilistic linguistic information. Int. J. Fuzzy Syst. 22, 749–759 (2020)

    Google Scholar 

  30. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2(156), 445–455 (2004)

    MATH  Google Scholar 

  31. Gao, H., Ran, L.G., Wei, G.W., Wei, C., Wu, J.: VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Public Health 17(2), 525 (2020)

    Google Scholar 

  32. Yu, S.M., Wang, J., Wang, J.Q.: An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 25(3), 781–805 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Wu, Q., Liu, X.W., Qin, J.D., Wang, W.Z., Zhou, L.G.: A linguistic distribution behavioral multi-criteria group decision making model integrating extended generalized TODIM and quantum decision theory. Appl. Soft Comput. 98, 106757106757 (2020)

    Google Scholar 

  34. Lin, M.W., Chen, Z.Y., Liao, H.C., Xu, Z.S.: ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dyn. 96(3), 2125–2143 (2019)

    MATH  Google Scholar 

  35. Akram, M., Ilyas, F., Garg, H.: Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Comput. 24(5), 3425–3453 (2020)

    Google Scholar 

  36. Ju, Y.B., Wang, A.H., You, T.H.: Emergency alternative evaluation and selection based on ANP, DEMATEL, and TL-TOPSIS. Nat. Hazards 75, 347–379 (2015)

    Google Scholar 

  37. Yazdi, M., Nedjati, A., Zareic, E., Abbassi, R.: A novel extension of DEMATEL approach for probabilistic safety analysis in process systems. Saf. Sci. 121, 119–136 (2020)

    Google Scholar 

  38. Saaty, T.L.: Decision-making with the AHP: why is the principal eigenvector necessary. Eur. J. Oper. Res. 145(1), 85–91 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Ruiz, H.S., Sunarso, A., Ibrahim-bathis, K., Murti, S. A., Budiarto, I.: GIS-AHP multi-decision-criteria-analysis for the optimal location of solar energy plants at Indonesia. arXiv preprint (2020). arXiv: 2007.15351

  40. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Google Scholar 

  41. Yang, C.X., Wang, Q.Z., Peng, W.D., Zhu, J.: A multi-criteria group decision-making approach based on improved BWM and multimoora with normal wiggly hesitant fuzzy information. Int. J. Comput. Intell. Syst. 13(1), 366–381 (2020)

    Google Scholar 

  42. Wu, Z.J., Zhang, S.T., Liu, X.D., Wu, J.: Best-worst multi-attribute decision making method based on new possibility degree with probabilistic linguistic information. IEEE Access 7, 133900–133913 (2019)

    Google Scholar 

  43. Liao, H.C., Qin, R., Gao, C.Y., Wu, X.L., Hafezalkotob, A., Herrera, F.: Score-HeDLiSF: a score function of hesitant fuzzy linguistic term set based on hesitant degrees and linguistic scale functions: An application to unbalanced hesitant fuzzy linguistic MULTIMOORA. Inf. Fusion 48, 39–54 (2019)

    Google Scholar 

  44. Brauers, W.K.M., Zavadskas, E.K.: Robustness of MULTIMOORA: a method for multi-objective optimization. Informatica 1(1), 1–25 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Liao, H.C., Jiang, L.S., Lev, B., Fujita, H.: Novel operations of PLTSs based on the disparity degrees of linguistic terms and their use in designing the probabilistic linguistic ELECTRE III method. Appl. Soft Comput. 80, 450–464 (2019)

    Google Scholar 

  46. Tang, M., Long, Y.L., Liao, H.C., Shui, X.Z.: Inclusion measures of probabilistic linguistic term sets and their application in classifying cities in the Economic Zone of Chengdu Plain. Appl. Soft Comput. 82, 105572 (2019)

    Google Scholar 

  47. Zhang, X.L.: A novel probabilistic linguistic approach for large-scale group decision making with incomplete weight information. Int. J. Fuzzy Syst. 20(7), 2245–2256 (2017)

    Google Scholar 

  48. Li, Y., Zhang, Y.X., Xu, Z.S.: A decision-making model under probabilistic linguistic circumstances with unknown criteria weights for online customer reviews. Int. J. Fuzzy Syst. 22, 777–789 (2020)

    Google Scholar 

  49. Liu, Z.M., Lin, L., Zhao, X.L., Sha, L.B., Wang, D., Wang, X.Y., Liu, P.D.: Selecting the optimal green agricultural products supplier: a novel approach based on GBWM and PROMETHEE II. Sustainability 12(17), 6703 (2020)

    Google Scholar 

  50. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 115(1), 67–82 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Xu, Z.S.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Google Scholar 

  53. Olson, C.F.: A probabilistic formulation for Hausdorff matching. In: 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 150–156

  54. Pedrycz, W., Park, B.J., Oh, S.K.: The design of granular classifiers: a study in the synergy of interval calculus and fuzzy sets in pattern recognition. Pattern Recogn. 41(12), 3720–3735 (2008)

    MATH  Google Scholar 

  55. Brans, J.P.: Lingenierie de la decision, elaboration dinstruments daide a la decision, method PROMETHEE. In: Nadeau, R., Landry, M. (eds.) Laide a la decision: nature, instrument set perspectives davenir, pp. 183–214. Presses de Universite Laval, Quebec (1982)

    Google Scholar 

  56. Adler, J., Parmryd, I.: Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A 77(8), 733–742 (2010)

    Google Scholar 

  57. Stemler, S.E.: A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Pract. Assess. Res. Eval. (2004). https://doi.org/10.7275/96jp-xz07

    Article  Google Scholar 

  58. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5(4), 297–323 (1992)

    MATH  Google Scholar 

  59. Zhou, X.Y., Wang, L.Q., Liao, H.C., Wang, S.Y., Lev, B., Fujita, H.: A prospect theory-based group decision approach considering consensus for portfolio selection with hesitant fuzzy information. Knowl. Based Syst. 168, 28–38 (2019)

    Google Scholar 

  60. Chen, T., Wang, Y.T., Wang, J.Q., Li, L., Cheng, P.F.: Multistage decision framework for the selection of renewable energy sources based on prospect theory and PROMETHEE. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00858-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 71971115, 71871108, 71471087, 61673209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginger Y. Ke.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Appendix

Appendix

The proof of the basic operations are as follows.

For PHFLS \({\tilde{A}}_1(p)\), \(k=1,2,\ldots ,u\);

For PHFLS \({\tilde{A}}_2(p)\), \(k=1,2,\ldots ,v\).

  1. 1.
    $$\begin{aligned}&{\tilde{A}}_1(p)\oplus {\tilde{A}}_2(p) \\&\quad =\langle \{[A_1^{(1)}(p_1^{(1)})+ A_2^{(1)}(p_2^{(1)})+A_1^{(1)}(p_1^{(1)})\\&\qquad + A_2^{(2)}(p_2^{(2)})+\cdots +A_1^{(1)}(p_1^{(1)})\\&\qquad + A_2^{(v)}(p_2^{(v)})]+[A_1^{(2)}(p_1^{(2)})+ A_2^{(1)}(p_2^{(1)})\\&\qquad +A_1^{(2)}(p_1^{(2)})+ A_2^{(2)}(p_2^{(2)})+\cdots +A_1^{(2)}(p_1^{(2)})+ A_2^{(v)}(p_2^{(v)})]+\cdots \\&\qquad +[A_1^{(u)}(p_1^{(u)})+ A_2^{(1)}(p_2^{(1)})+A_1^{(u)}(p_1^{(u)})+A_2^{(2)}(p_2^{(2)})\\&\qquad +\cdots +A_1^{(u)}(p_1^{(u)})+ A_2^{(v)}(p_2^{(v)})]\},\\&\qquad \{[(\gamma_1^{(1)}+\gamma_2^{(1)}-\gamma_1^{(1)}\gamma_2^{(1)})+(\gamma_1^{(1)}+\gamma_2^{(2)}-\gamma_1^{(1)}\gamma_2^{(2)})\\&\qquad +\cdots +(\gamma_1^{(1)}+\gamma_2^{(v)}- \gamma_1^{(1)}\gamma_2^{(v)})],\\&\qquad [(\gamma_1^{(2)}+\gamma_2^{(1)}-\gamma_1^{(2)}\gamma_2^{(1)})+(\gamma_1^{(2)}+\gamma_2^{(2)}-\gamma_1^{(2)}\gamma_2^{(2)})+\cdots \\&\qquad +(\gamma_1^{(2)}+\gamma_2^{(v)}-\gamma_1^{(2)}\gamma_2^{(v)})],\ldots ,[(\gamma_1^{(u)}+\gamma_2^{(1)}\\&\qquad -\gamma_1^{(u)}\gamma_2^{(1)})+(\gamma_1^{(u)}+\gamma_2^{(2)}-\gamma_1^{(u)}\gamma_2^{(2)})+\cdots \\&\qquad +(\gamma_1^{(u)}+\gamma_2^{(v)}-\gamma_1^{(u)}\gamma_2^{(v)})]\}\rangle \\ &= \left \langle \bigcup_{A_1^{(k)}\in {\tilde{A}}_1(p),A_2^{(k)}\in {\tilde{A}}_2(p)}(A_1^{(k)}p_1^{(k)}+ A_2^{(k)}p_2^{(k)}), \right.\\&\left.\qquad \bigcup_{\gamma_1\in h_1,\gamma_2 \in h_2}\{\gamma_1+\gamma_2-\gamma_1\gamma_2\}\right.\rangle. \end{aligned}$$
  2. 2.
    $$\begin{aligned}&{\tilde{A}}_1(p)\otimes {\tilde{A}}_2(p)\\&\quad =\langle \{[{A_1^{(1)}}^{p_1^{(1)}}\cdot {A_2^{(1)}}^{p_2^{(1)}}+{A_1^{(1)}}^{p_1^{(1)}}\cdot {A_2^{(2)}}^{p_2^{(2)}}+\cdots \\&\qquad +{A_1^{(1)}}^{p_1^{(1)}}\cdot {A_2^{(v)}}^{p_2^{(v)}}]+[{A_1^{(2)}}^{p_1^{(2)}}\cdot {A_2^{(1)}}^{p_2^{(1)}}\\&\qquad +{A_1^{(2)}}^{p_1^{(2)}}\cdot {A_2^{(2)}}^{p_2^{(2)}} + \cdots \\&\qquad +{A_1^{(2)}}^{p_1^{(2)}}\cdot {A_2^{(v)}}^{p_2^{(v)}}]+\cdots \\&\qquad +[{A_1^{(u)}}^{p_1^{(u)}}\cdot {A_2^{(1)}}^{p_2^{(1)}}+{A_1^{(u)}}^{p_1^{(u)}}\cdot {A_2^{(2)}}^{p_2^{(2)}}+\cdots \\&\qquad +{A_1^{(u)}}^{p_1^{(1)}}\cdot {A_2^{(v)}}^{p_2^{(v)}}]\},\\&\qquad \{[(\gamma_1^{(1)}\gamma_2^{(1)})+(\gamma_1^{(1)}\gamma_2^{(2)})+\cdots +(\gamma_1^{(1)}\gamma_2^{(v)})],\\&\qquad [(\gamma_1^{(2)}\gamma_2^{(1)})+(\gamma_1^{(2)}\gamma_2^{(2)})+\cdots +(\gamma_1^{(2)}\gamma_2^{(v)})],\ldots ,\\&\qquad [(\gamma_1^{(u)}\gamma_2^{(1)})+(\gamma_1^{(u)}\gamma_2^{(2)})\\&\qquad +\cdots +(\gamma_1^{(u)}\gamma_2^{(v)})]\}\rangle \\&\quad = \left\langle \bigcup_{A_1^{(k)}\in {\tilde{A}}_1(p),A_2^{(k)}\in {\tilde{A}}_2(p)}({A_1^{(k)}}^{p_1^{(k)}}\cdot {A_2^{(k)}}^{p_2^{(k)}}),\bigcup_{\gamma_1\in h_1,\gamma_2 \in h_2}\{\gamma_1\gamma_2\}\right\rangle. \end{aligned}$$
  3. 3.
    $$\begin{aligned}&{\tilde{A}}(p)^\lambda =\langle \{({A^{(1)}}^{\lambda p^{(1)}})+({A^{(2)}}^{\lambda p^{(2)}})+\cdots \\&\qquad +({A^{(u)}}^{\lambda p^{(u)}})\},\{(\gamma ^{(1)})^\lambda +(\gamma ^{(2)})^\lambda +\cdots \\&\qquad +(\gamma ^{(u)})^\lambda \}\rangle \\&\quad =\langle \bigcup_{A^{(k)}\in {\tilde{A}}(p)}({A^{(k)}}^{\lambda p^{(k)}}),\bigcup_{\gamma \in h}\{\gamma ^\lambda \}\rangle , \quad \lambda >0. \end{aligned}$$
  4. 4.
    $$\begin{aligned}&\lambda {\tilde{A}}(p)=\langle \{\lambda p^{(1)}A^{(1)}+\lambda p^{(2)}A^{(2)}+\cdots \\&\qquad +\lambda p^{(u)}A^{(u)}\},\{[1-(1-\gamma ^{(1)})^\lambda ]+[1-(1-\gamma ^{(2)})^\lambda ]+\cdots \\&\qquad +[1-(1-\gamma ^{(u)})^\lambda ]\}\rangle \\&\quad = \langle \bigcup_{A^{(k)}\in {\tilde{A}}(p)}(\lambda p^{(k)}{A^{(k)}}),\bigcup_{\gamma \in h}\{1-(1-\gamma )^\lambda \}\rangle , \,\,\,\, \lambda >0. \end{aligned}$$
Table 17 Directed Hausdorff distance for criterion 1
Table 18 Directed Hausdorff distance for criterion 2
Table 19 Directed Hausdorff distance for criterion 3
Table 20 Directed Hausdorff distance for criterion 4
Table 21 Weights \(w_j\) for criteria \(C_j\)
Table 22 Multi-criteria preference index \(\varPi (A_i,A_k)\)
Table 23 Positive, negative flows

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xu, H. & Ke, G.Y. A PROMETHEE II Approach Based on Probabilistic Hesitant Fuzzy Linguistic Information with Applications to Multi-Criteria Group Decision-Making (ICSSE 2020). Int. J. Fuzzy Syst. 23, 1556–1580 (2021). https://doi.org/10.1007/s40815-021-01098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01098-7

Keywords

Navigation