Skip to main content
Log in

A Hybrid Fuzzy Goal Programming for Smart Phones and Rate Plan Selection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Smartphones are essential personal belongings today. However, smartphone buyers (SBs) are often hesitant in deciding what the best smartphone and rate plan to choose offered by telecom providers. Among many new smartphones, it is often difficult for users to choose the most suitable one in consideration of reaching the salient success aspiration level (SSAL) as close as possible, e.g., large battery capacity, and avoiding falling below the survival aspiration level (SAL) as far as possible, e.g., budget limitation, simultaneously. A novel hybrid weighted SSAL-SAL fuzzy goal programming (FGP) is proposed to assist SBs in finding satisfactory smartphones of their preferences with suitable rate plans. To meet different preferences, SBs can easily set different weights for each smartphone selection goal with linguistic terms, such as high, average, and low. In addition, these linguistic terms can easily be transformed into trapezoidal fuzzy numbers. The weights are then attached to goals in the objective function in the weighted SSAL-SAL-FGP model for choosing the most suitable smartphone. Moreover, this study also allows SBs to set the goal satisfaction levels as a preemptive priority for each goal in the FGP to find the most suitable rate plan option for the selected smartphone. The proposed approach allows SBs to select the best smartphones with suitable rate plans considering their priority preferences. In addition, SBs can save costs and precious time in finding their ideal smartphones and rate plan options. Finally, various examples are used to demonstrate the usefulness of the proposed weighted SSAL-SAL-FGP model, which allows SBs to set different weights for each goal with the intuitive method, such as linguistic terms or preemptive priority to select appropriate smartphones with suitable rate plans to match their habits and budgets. Besides, this study distributed an online questionnaire to investigate smartphone owners and found that female smartphone owners consider the battery capacity and the weight of the smartphone more crucial than the other criteria, while male smartphone owners prefer a smartphone with bigger screen size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aggarwal, A., Choudhary, C., Mehretra, D.: Evaluation of smartphone in Indian market using EDAS. Procedia Comput. Sci. 132, 236–243 (2018)

    Article  Google Scholar 

  2. Ahmad, W., Ahmed, T., Ahmad, B.: Pricing of mobile phone attributes at the retail level in a developing country: hedonic analysis. Telecommun. Policy 43, 299–309 (2019)

    Article  Google Scholar 

  3. Anand, A., Bansal, G., Aggrawal, D.: Choice based diffusion model for predicting sales of mobile phones using conjoint analysis. J. High Technol. Manage. Res. 29, 216–226 (2018)

    Article  Google Scholar 

  4. Chang, C.-T.: Multi-choice goal programming, Omega. Int. J. Manage. Sci. 35, 389–396 (2007)

    Google Scholar 

  5. Chang, C.-T.: On product classification with various membership functions and binary behavior. J. Oper. Res. Soc. 65, 141–150 (2014)

    Article  Google Scholar 

  6. Chang, C.-T.: A technique of the salient success and survival aspiration levels for multiple objective/criteria decision-making problems. J. Oper. Res. Soc. 1, 1–9 (2018)

    Google Scholar 

  7. Chang, F.-C., Chiu, C.-H., Chen, P.-H., Chiang, J.-T., Liu, S.: Children’s use of mobile devices, smartphone addiction and parental mediation in Taiwan. Comput. Hum. Behav. 93, 25–32 (2019)

    Article  Google Scholar 

  8. Chen, D.-N., Hu, P.J.-H., Kuo, Y.-R., Liang, T.-P.: A Web-based personalized recommendation system for mobile phone selection: design, implementation, and evaluation. Expert Syst. Appl. 37, 8201–8210 (2010)

    Article  Google Scholar 

  9. Cheng, C.H., Lin, Y.: Evaluation the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. Eur. J. Oper. Res. 142, 174–186 (2002)

    Article  Google Scholar 

  10. Chunghwa Telecom: https://www.cht.com.tw/home/consumer/mobservice/device/phones. (2020)

  11. Çolak, M., Kaya, İ.: Multi-criteria evaluation of energy storage technologies based on hesitant fuzzy information: a case study for Turkey. J. Energy Storage 28, 101211 (2020). https://doi.org/10.1016/j.est.2020.101211

    Article  Google Scholar 

  12. Feng, C., Huang, S., Bai, G.: A group decision making method for sustainable design using intuitionistic fuzzy preference relations in the conceptual design stage. J. Clean. Product. 243, 118640 (2020). https://doi.org/10.1016/j.jclepro.2019.118640

    Article  Google Scholar 

  13. Gordon, C., Zidjaly, N. A., Tovares, A. V.: Mobile phones as cultural tools for identity construction among college students in Oman, Ukraine, and the U.S., Discourse, Context & Media 17, 9-19 (2017)

  14. Greve, H.R.: Performance, aspirations, and risky organizational change. Adm. Sci. Q. 43, 58–86 (1998)

    Article  Google Scholar 

  15. Haverila, M.: Mobile phone feature preferences, customer satisfaction and repurchase intent among male users. Australas. Market. J. 19, 238–246 (2011)

    Article  Google Scholar 

  16. Haverila, M.: Cell phone usage and broad feature preferences: a study among Finnish undergraduate students. Telematics Inform. 30, 177–188 (2013)

    Article  Google Scholar 

  17. Hsu, W.: A fuzzy multiple-criteria decision-making system for analyzing gaps of service quality. Int. J. Fuzzy Syst. 17, 256–267 (2015)

    Article  Google Scholar 

  18. Javed, S.A., Mahmoudi, A., Liu, S.: Grey Absolute Decision Analysis (GADA) method for multiple criteria group decision-making under uncertainty. Int. J. Fuzzy Syst. 22, 1073–1090 (2020)

    Article  Google Scholar 

  19. Kurniawan, S.: Older people and mobile phones: a multi-method investigation. Int. J. Hum. Comput. Stud. 66, 889–901 (2008)

    Article  Google Scholar 

  20. Işıklar, G., Büyüközkan, G.: Using a multi-criteria decision making approach to evaluate mobile phone alternatives. Comput. Stand. Interf. 29, 265–274 (2007)

    Article  Google Scholar 

  21. Liu, Y., Qin, Y., Han, Y.: Multiple criteria decision making with probabilities in interval-valued pythagorean fuzzy setting. Int. J. Fuzzy Syst. 20, 558–571 (2018)

    Article  MathSciNet  Google Scholar 

  22. Liu, P., Diao, H., Zou, L., Deng, A.: Uncertain multi-attribute group decision making based on linguistic-valued intuitionistic fuzzy preference relations. Inf. Sci. 50, 293–308 (2020)

    Article  MathSciNet  Google Scholar 

  23. Meng, F., Tang, J., Fujita, H.: Linguistic intuitionistic fuzzy preference relations and their application to multi-criteria decision making. Inf. Fus. 46, 77–90 (2019)

    Article  Google Scholar 

  24. Mezias, S.J., Chen, Y.-R., Murphy, P.R.: Aspiration-level adaptation in an American financial services organization: a field study. Manage. Sci. 48, 1285–1300 (2002)

    Article  Google Scholar 

  25. Miller, K.D., Chen, W.-R.: Variable organizational risk preferences: tests of the March-Shapira model. Acad. Manage. J. 47, 105–115 (2004)

    Google Scholar 

  26. Mobilecon. https://www.mobilecon2012.com/top-14-criteria-in-buying-the-best-smartphone/. (2019)

  27. Mohanty, B.K., Bhasker, B.: Product classification in the Internet business-a fuzzy approach. Decis. Support Syst. 38, 611–619 (2005)

    Article  Google Scholar 

  28. Park, C.S.: Examination of smartphone dependence: functionally and existentially dependent behavior on the smartphone. Comput. Hum. Behav. 93, 123–128 (2019)

    Article  Google Scholar 

  29. POLLS market research consultancy, 2018, https://www.pollread.com/2018/02/17/mobile_survey/

  30. Potoglou, D., Whitmarsh, L., Whittle, C., Tsouros, I., Persson, T.: To what extent do people value sustainable-resourced materials? A choice experiment with cars and mobile phones across six countries. J. Clean. Prod. 246, 118957 (2020). https://doi.org/10.1016/j.jclepro.2019.118957

    Article  Google Scholar 

  31. Quariguasi-Frota-Neto, J., Bloemhof, J.: An analysis of the eco-efficiency of remanufactured personal computers and mobile phones. Prod. Oper. Manage. 21(1), 101–114 (2012)

    Article  Google Scholar 

  32. Rau, P.L., Zhang, Y., Biaggi, L., Engels, R.A.: Qian, L: How large is your phone? A cross-cultural study of smartphone comfort perception and preference between Germans and Chinese. Precedia Manuf. 3, 2149–2154 (2015)

    Google Scholar 

  33. Schrage, L.: LINGO Release 8.0, LINDO System, Inc. (2002)

  34. Seva, R.R., Helander, M.G.: The influence of cellular phone attributes on users’ affective experiences: a cultural comparison. Int. J. Ind. Ergon. 39, 341–346 (2009)

    Article  Google Scholar 

  35. Wu, Y., Tao, Y., Zhang, B., Wang, S., Zhou, J.: A decision framework of offshore wind power station site selection using a PROMETHEE method under intuitionistic fuzzy environment: a case in China. Ocean Coast. Manage. 184, 105016 (2020). https://doi.org/10.1016/j.ocecoaman.2019.105016

    Article  Google Scholar 

  36. Zheng, X.X., Chang, C.-T.: Topology design of remote patient monitoring system concerning qualitative and quantitative issues, Omega. Int. J. Manage. Sci. (2020). https://doi.org/10.1016/j.omega.2019.102137

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology under Grant MOST 106-2410-H-182-004 and Chang Gung Medical Foundation under Grant BMRPA79.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Ter Chang.

Appendices

Appendices

1.1 Appendix A (SSAL-SAL model)

$${\text{Minimize}}\;\sum\limits_{i = 1}^{4} {w_{i} (e_{i}^{{}} + d_{i}^{ + } )}$$
(1)

Subject to

$$\mu_{1} + e_{1} = 1,$$
(2)
$${\mathbf{f}}({\mathbf{x}}) + ({\mathbf{D}}^{{\mathbf{u}}} - {\mathbf{g}})\mu_{1} + d_{1}^{ + } = {\mathbf{D}}^{{\mathbf{u}}} ,$$
(3)
$$\mu_{2} + e_{2} = 1,$$
(4)
$${\mathbf{f}}({\mathbf{x}}) - {\mathbf{g}}\mu_{2} - d_{2}^{ + } = 0,$$
(5)
$$\mu_{3} + e_{3} = 1,$$
(6)
$${\mathbf{e}}({\mathbf{x}}) - ({\mathbf{N}}^{{\mathbf{u}}} - {\mathbf{h}})\mu_{\delta } + d_{3}^{ + } = {\mathbf{h}},$$
(7)
$$\mu_{4} + e_{4} = 1,$$
(8)
$${\mathbf{e}}({\mathbf{x}}) + {\mathbf{h}}\mu_{\delta } - d_{4}^{ + } = {\mathbf{h}},$$
(9)

\({\mathbf{x}} \in {\mathbf{F}}\) (\({\mathbf{F}}\) is a feasible set)where \(\mu_{1}\), \(\mu_{2}\), \(\mu_{3}\), and \(\mu_{4}\) are the fuzzy scores; \(e_{1}\), \(e_{2}\), \(e_{3}\), and \(e_{4}\) are the deviational variables that attach to \(1 - \mu_{1}\), \(1 - \mu_{2}\), \(1 - \mu_{3}\), and \(1 - \mu_{4}\). \({\mathbf{f}}({\mathbf{x}}) = \left\{ {f_{1} ({\mathbf{x}})} \right.,f_{2} ({\mathbf{x}}), \ldots ,\left. {f_{n} ({\mathbf{x}})} \right\}\) is an n-vector of the object functions, defined as \(f_{i} ({\mathbf{x}}) = {\mathbf{c}}^{j} {\mathbf{x}},j = 1,2, \ldots ,n,\) where \({\mathbf{c}}^{j}\) is the n-vector of coefficients for the jth objective, \({\mathbf{g}} = (g_{1} ,g_{2} , \ldots ,g_{n} ) \in R^{n}\) is the vector of the SSAL, and \({\mathbf{h}} = (h_{1} ,h_{2} , \ldots ,h_{n} ) \in R^{n}\) is the vector of the SAL. \({\mathbf{e}}({\mathbf{x}}) = \left\{ {e_{1} ({\mathbf{x}})} \right.ef_{2} ({\mathbf{x}}), \ldots ,\left. {e_{n} ({\mathbf{x}})} \right\}\) is an n-vector of the object functions, defined as \(e_{i} ({\mathbf{x}}) = {\mathbf{c}}^{i} {\mathbf{x}},i = 1,2, \ldots ,n,\) where \({\mathbf{c}}^{i}\) is the n-vector of coefficients for the ith objective. \({\mathbf{e}}({\mathbf{x}})\) and \({\mathbf{f}}({\mathbf{x}})\) can be either the same or different functions, depending on real situations or DM needs.\(d_{1}^{ + }\) is the deviational variable that is attached to \({\mathbf{D}}^{{\mathbf{u}}} - ({\mathbf{f}}({\mathbf{x}}) + ({\mathbf{D}}^{{\mathbf{u}}} - {\mathbf{g}})\mu_{1} ).\) \(d_{2}^{ + }\) is the deviational variable that is attached to \({\mathbf{f}}({\mathbf{x}}) - {\mathbf{g}}\mu_{2}\). \(d_{3}^{ + }\) is the deviational variable that is attached to \({\mathbf{h}} - {\mathbf{e}}({\mathbf{x}}) + ({\mathbf{N}}^{{\mathbf{u}}} - {\mathbf{h}})\mu_{\delta }\). \(d_{4}^{ + }\) is the deviational variable that is attached to \({\mathbf{e}}({\mathbf{x}}) + {\mathbf{h}}\mu_{\delta } - {\mathbf{h}}\).

1.2 Appendix B

A trapezoidal fuzzy number, \(\tilde{A} = (a_{1} ,b_{1} ,c_{1} ,d_{1} ),\) \(a_{1} \le b_{1} \le c_{1} \le d_{1} ,\) and its membership functions are expressed as follows:

$$\mu_{{\tilde{A}}} (x) = \left\{ \begin{array}{*{20}l} \, 0,\qquad \quad x > d_{1} . \hfill \\ \, \frac{{(x - a_{1} )}}{{(b_{1} - a_{1} )}},\quad a_{1} \le x \le b_{1} , \hfill \\ \, 1,\qquad \quad b_{1} \le x \le c_{1} , \hfill \\ \, \frac{{(x - d_{1} )}}{{(c_{1} - d_{1} )}},\quad c_{1} \le x \le d_{1} , \hfill \\ 0,\qquad \quad a_{1} \le x \le b_{1} , \hfill \\ \end{array} \right.$$
(10)

When \(b_{1} = c_{1} ,\) \(\mu_{{\tilde{A}}} (x)\) become triangular fuzzy numbers.

There are q SBs and l goals. The kth SB can define the trapezoidal fuzzy number \(\tilde{A}_{ki}\) by linguistic terms for the ith goal according to their preference as Eq. (11)

$$\tilde{A}_{ki} = (a_{ki} ,b_{ki} ,c_{ki} ,d_{ki} ),\;0 \le a_{ki} \le b_{ki} \le c_{ki} \le d_{ki} \le 1,\;k = 1, \ldots ,q,\;i = 1, \ldots ,l.$$
(11)

For the goal 1, the kth DM can define the trapezoidal fuzzy number, \(\tilde{A}_{k1}\) for the ith goal according to their preference as Eq. (12).

$$\tilde{A}_{k1} = (a_{k1} ,b_{k1} ,c_{k1} ,d_{k1} ),\quad k = 1, \ldots ,q.$$
(12)

In solving the group decision-making problem, the different trapezoidal fuzzy numbers from m SBs for goal 1 can be merged with Eq. (13). The average \(\tilde{A}_{mean1}\) of all \(\tilde{A}_{k1}\) is computed by Eq. (13).

$$\tilde{A}_{{{\text{mean}}1}} = \left( {a_{{{\text{mean}}1}} ,\;b_{{{\text{mean}}1}} ,\;c_{{{\text{mean}}1}} ,\;d_{{{\text{mean}}1}} } \right) = \left( {\frac{1}{q}\sum\limits_{k = 1}^{q} {a_{k1} ,} \;\frac{1}{q}\sum\limits_{k = 1}^{q} {b_{k1} ,} \;\frac{1}{q}\sum\limits_{k = 1}^{q} {c_{k1} ,} \;\frac{1}{q}\sum\limits_{k = 1}^{q} {d_{k1} } } \right).$$
(13)

For an SB, assume that the trapezoidal fuzzy numbers W1, W2, and W3 are the weights of the goals G1, G2, and G3, respectively, where \({\text{W}}_{1} = (a_{1} ,b_{1} ,c_{1} ,d_{1} )\), \({\text{W}}_{2} = (a_{2} ,b_{2} ,c_{2} ,d_{2} )\), and \({\text{W}}_{3} = (a_{3} ,b_{3} ,c_{3} ,d_{3} )\). The normalized weights \(\overline{\text{W}}_{1}\), \(\overline{\text{W}}_{2}\), and \(\overline{\text{W}}_{3}\) of W1, W2, and W3, respectively, can be obtained from Eq. (14).

$$\begin{aligned} \overline{\text{W}}_{1} & = {\text{W}}_{1} \emptyset ({\text{W}}_{1} \oplus {\text{W}}_{2} \oplus {\text{W}}_{3} )= (a_{1} ,b_{1} ,c_{1} ,d_{1} )\emptyset (a_{1} + a_{2} + a_{3} ,b_{1} + b_{2} + b_{3} ,c_{1} + c_{2} + c_{3} ,d_{1} + d_{2} + d_{3} ) \\ & = \left( {\frac{{a_{1} }}{{d_{1} + d_{2} + d_{3} }},\frac{{b_{1} }}{{c_{1} + c_{2} + c_{3} }},\frac{{c_{1} }}{{b_{1} + b_{2} + b_{3} }},\frac{{d_{1} }}{{a_{1} + a_{2} + a_{3} }}} \right) \\ \end{aligned}$$
(14)

where \(a_{1}\), \(b_{1}\), \(c_{1}\), and \(d_{1}\) are individual trapezoidal fuzzy numbers of W1; \(a_{2}\), \(b_{2}\), \(c_{2}\), and \(d_{2}\) are individual trapezoidal fuzzy numbers of W2; \(a_{3}\), \(b_{3}\), \(c_{3}\), and \(d_{3}\) are individual trapezoidal fuzzy numbers of W3.

1.3 Appendix C (FGP)

$${\text{Minimize}}\;\sum\limits_{i = 1}^{n} {(p_{i} + n_{i} ) + a_{i}^{ + } + a_{i}^{ - } )}$$
(15)

Subject to

$$r_{i} \le \left( {\frac{{g_{i,\text{max} } - y_{i} }}{{g_{i,\text{max} } - g_{i,\text{min} } }}} \right)b_{i} ,\quad i = 1,2, \ldots ,n,$$
(16)
$$z_{i} ({\mathbf{x}}) - p_{i} + n_{i} = y_{i} \quad i = 1,2, \ldots ,n,$$
(17)
$$r_{i} - a_{i}^{ + } + a_{i}^{ - } = 1,\quad i = 1,2, \ldots ,n,$$
(18)
$$g_{i,\text{min} } \le y_{i} \le g_{i,\text{max} } ,\quad i = 1,2,\ldots,n,$$
(19)
$$p_{i} ,n_{i} ,a_{i}^{ + } ,a_{i}^{ - } ,r_{i} \ge 0,\quad i = 1,2,\ldots,n,$$
(20)
$$b_{i} \in R_{i} ({\mathbf{x}}),\quad i = 1,2, \ldots ,n,$$
(21)
$$1 - r_{i} \le \sum\limits_{j = 1}^{m - 1} {(\mu_{\text{attribute}} (P_{j} )} - \mu_{\text{attribute}} (P_{j + 1} ))y_{i,j} - k,$$
(22)
$$y_{i,j} \ge y_{i,j + 1} ,\quad j = 1,2, \ldots ,m - 1,$$
(23)

where \(p_{i}\) and \(n_{i}\) are positive and negative deviational variables from the ith target value \(y_{i}\); \(a_{i}^{ + }\) and \(a_{i}^{ - }\) are deviational variables attached to \(\left| {r_{i} - 1} \right|\); \(r_{i}\) is the value of the utility function; \(b_{i}\) is the binary decision variable that is restricted by the resource constraint function \(R_{i} ({\mathbf{x}})\). The target value \(y_{i} \in [g_{i,\text{min} } ,g_{i,\text{max} } ]\) of \(z_{i} ({\mathbf{x}})\) is a continuous variable, where \(g_{i,\text{max} }\) and \(g_{i,\text{min} }\) are the upper and lower bound values; k is a small positive value. The binary variables, \(y_{i,j}\), are used to indicate which alternatives are selected. For example, if \(\mathop \varPi \nolimits_{j = 1}^{m - 1} y_{i,j} = 1\), alternative, \(P_{j}\), is selected; otherwise \(P_{j}\) is not selected. \(\mu_{\text{attribute}} (P_{j} )\) represents the average satisfaction level for the attributes of the jth alternative. With Eq. (22), the summation of the satisfaction level for the attributes of the jth alternative will be forced to achieve a level, the higher, the better. Meanwhile, \(y_{i,j}\) will be selected in sequence, and hence, \(y_{i,j}\) will be selected before \(y_{i,j + 1}\) with Eq. (23).

1.4 Appendix D

$${\text{Minimize}}\;\left( {\frac{{s_{1}^{ + } + s_{1}^{ - } }}{1}} \right) + k_{1}^{ - } + \left( {\frac{{d_{2}^{ + } + d_{2}^{ - } }}{1}} \right) + f_{2}^{ - } + \left( {\frac{{d_{3}^{ + } + d_{3}^{ - } }}{1}} \right) + f_{3}^{ - } + \left( {\frac{{s_{4}^{ + } + s_{4}^{ - } }}{1}} \right) + k_{4}^{ - }$$

!G1: Price\(s_{1}^{ + } = 1 - n_{1}^{ + } ,\) \(s_{1}^{ - } = 1 - n_{1}^{ - } ,\) \(0.63x_{1} + 0.94x_{2} + 0.47x_{3} + 0x_{4} + 1x_{5} - n_{1}^{ + } + n_{1}^{ - } = 1\), (\(h_{1,\text{max} } = 1\))

\(n_{1}^{ + } \le b_{1}\), \(n_{1}^{ - } \le (1 - b_{1} )\), \(\eta_{1} \le (0.63x_{1} + 0.94x_{2} + 0.47x_{3} + 0x_{4} + 1x_{5} )\), \(\eta_{1} + k_{1}^{ - } = 0\), \(x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 1\),@BIN (\(x_{i}\)); @BIN (\(b_{1}\)); @BIN (\(b_{4}\)); \(i = 1,2, \ldots ,5\)

For example, by referring to the price data in Table 5, we have \(e_{i} ({\mathbf{x}}) = 0.63x_{1} + 0.94x_{2} + 0.47x_{3}\) \(+ 0x_{4} + 1x_{5}\) in price goal (G1). Since G1 is an SAL goal, the equations of G1 will find the alternatives from \(e_{i} ({\mathbf{x}})\), which are moving away from \(h_{i,\text{max} } = 1\) (the highest price of all).

1.5 Appendix E

$${\text{Minimize}}\;\sum\limits_{j = 1}^{12} {(p_{1j} + n_{1j} ) + } \sum\limits_{j = 1}^{16} {(p_{2j} + n_{2j} ) + } \sum\limits_{j = 1}^{14} {(p_{3j} + n_{3j} ) + } \sum\limits_{j = 1}^{9} {(p_{4j} + n_{4j} )} + \sum\limits_{k = 1}^{4} {(a_{k}^{ + } + a_{k}^{ - } )} + \sum\limits_{j = 1}^{20} {(y_{1j} + y_{2j} + y_{3j} + y_{4j} )}$$

Subject to G5: The price of the smartphone with a two-year contract

$$\begin{aligned} r_{1} = \frac{{0.08(n_{11} - n_{12} )}}{1990} + \frac{{0.03(n_{12} - n_{13} )}}{1910} + \frac{{0.07(n_{13} - n_{14} )}}{90} + \frac{{0.11(n_{14} - n_{15} )}}{1410} + \frac{{0.1(n_{15} - n_{16} )}}{2590} + \frac{{0.11(n_{16} - n_{17} )}}{410} \hfill \\ + \frac{{0.03(n_{17} - n_{18} )}}{1500} + \frac{{0.19(n_{18} - n_{19} )}}{90} + \frac{{0.1(n_{19} - n_{110} )}}{1500} + \frac{{0.01(n_{110} - n_{111} )}}{910} + \frac{{0.14(n_{111} - n_{112} )}}{40} + \frac{{0.14n_{112} }}{1100} \hfill \\ \end{aligned}$$
$$\begin{aligned} r_{1} - a_{1}^{ + } + a_{1}^{ - } = 1,\;z_{1} - p_{11} + n_{11} = 13990,\;z_{1} - p_{12} + n_{12} = 12800,\;z_{1} - p_{13} + n_{13} = 12400, \hfill \\ z_{1} - p_{14} + n_{14} = 1490,\;z_{1} - p_{15} + n_{15} = 9990,\;z_{1} - p_{16} + n_{16} = 9990,\;z_{1} - p_{17} + n_{17} = 8400, \hfill \\ z_{1} - p_{18} + n_{18} = 7990,\;z_{1} - p_{19} + n_{19} = 5400,\;z_{1} - p_{110} + n_{110} = 3990,\;z_{1} - p_{112} + n_{112} = 1990, \hfill \\ \end{aligned}$$

\(\begin{aligned} y_{11} \ge y_{17} ,\;y_{11} = y_{12} = y_{13} = y_{14} = y_{15} = y_{16} ,\;y_{17} \ge y_{18} ,y_{18} \ge y_{19} ,y_{19} = y_{110} ,y_{110} \ge y_{111} ,y_{111} \ge y_{112} , \hfill \\ y_{112} \ge y_{113} ,\;y_{113} \ge y_{114} ,\;y_{114} \ge y_{115} ,\;y_{115} = y_{116} \;y_{116} \ge y_{117} ,\;y_{117} \ge y_{118} ,\;y_{118} \ge y_{119} ,\;y_{119} \ge y_{120} , \hfill \\ \end{aligned}\)\(y_{120} = 0,\;r_{1} = 0.5,\;r_{2} = 0.5,\;r_{3} = 0.2,\;r_{4} = 0.5,\)! Assume lambda 1 = 0.5, lambda 2 = 0.5, lambda 3 = 0.2, and lambda 4 = 0.5; @BIN (\(y_{ij}\)); \(i = 1,2, \ldots ,4;\) \(j = 1,2, \ldots ,20.\)

1.6 Appendix F

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, HP., Chang, CT. & Tan, K.H. A Hybrid Fuzzy Goal Programming for Smart Phones and Rate Plan Selection. Int. J. Fuzzy Syst. 23, 1613–1632 (2021). https://doi.org/10.1007/s40815-020-00999-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00999-3

Keywords

Navigation