Skip to main content
Log in

T-S Fuzzy Adaptive Control Based on Small Gain Approach for an Uncertain Robot Manipulators

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a T–S (Takagi–Sugeno) adaptive tracking algorithm control based on small gain theorem is proposed for an uncertain robot system with \(n\)-link manipulators. A nonzero time-varying parameter is introduced in the common T–S fuzzy logic system, the T–S type fuzzy logic system with updated parameters laws is build, then the new and original universal approximation with parameter is introduced. The approximation accuracy can be updated on-line by the parameters, which is not limited by the number of fuzzy rules. With the novel property of universal approximation, the proposed adaptive control can be synthetized to overcome the limitations such as on-line learning computation burden in conventional fuzzy logic systems. The originality T–S fuzzy logic system is used to compensate the unknown model of robot manipulators and the adaptive tracking control algorithm is designed with the new property of universal approximation. Based on the analysis of small gain theorem and ISS theory (input-to-state stability), all signals in closed-loop system can be guaranteed to be bounded, and the system can be extended from semi-global stability to global stability by employing the proposed adaptive control scheme. Finally, simulation results are shown to demonstrate the effectiveness of the adaptive control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Taylor, D.G., Kokotovic, P.V., Marino, R., Kannellakopoulos, I.: Adaptive regulation of nonlinear systems with unmodeled dynamics. IEEE Trans. Autom. Control 34(4), 405–412 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kokotović, P., Arcak, M.: Constructive nonlinear control: a historical perspective. Automatica 37(5), 637–662 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kanellakopoulos I., Kokotovic P.V., Morse A.S.: Systematic design of adaptive controllers for feedback linearizable systems. In: American Control Conference, pp. 649–654 (1991)

  4. Netto, M.S., Annaswamy, A.M., Ortega, R., Moya, P.: Adaptive control of a class of non-linearly parametrized systems using convexification. Int. J. Control 73(14), 1312–1321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Y.: Adaptive tracking control for a class of uncertain pure-feedback systems. Int. J. Robust Nonlinear Control 26(5), 1143–1154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asadi, M., Shandiz, H.T.: Adaptive control of pure-feedback systems in the presence of parametric uncertainties. Turkish J. Electr. Eng. Comput. Sci. 25(1), 508–519 (2017)

    Article  Google Scholar 

  7. Mahmoud, M.S., Alyazidi, N.M., Abouheaf, M.I.: Adaptive intelligent techniques for microgrid control systems: a survey. Int. J. Electr. Power Energy Syst. 90, 292–305 (2017)

    Article  Google Scholar 

  8. Li Y., Tee K., Yan R., Chan W., Wu Y., Limbu D.: Adaptive optimal control for coordination in physical human–robot interaction. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Congress Center Hamburg, Germany, Sept. 28–Oct. 2, 20–25 (2015)

  9. Su Y., Wu Y., Soh H., Du Z., Demiris Y.: Enhanced kinematic model for dexterous manipulation with an underactuated hand. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 3–7, Tokyo, Japan, pp. 2493–2499 (2013)

  10. Wu Y., Chan W., Li Y., Tee K., Yan R., Limbu D. K.: Improving human–robot interactivity for tele-operated industrial and service robot applications. In: 2015 IEEE 7th International Conference on CIS and RAM, July 15–17, Angkor Wat, Cambodia, pp. 153–158 (2015)

  11. Yang, C., Huang, K., Cheng, H., Li, Y., Su, C.: Haptic identification by ELM-controlled uncertain manipulator. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2398–2409 (2017)

    Article  Google Scholar 

  12. Na, J., Huang, Y., Wu, X., Gao, G., Herrmann, G., Jiang, J.Z.: Active adaptive estimation and control for vehicle suspensions with prescribed performance. IEEE Trans. Control Syst. Technol. 26(6), 2063–2077 (2018)

    Article  Google Scholar 

  13. Yang, C., Jiang, Y., He, W., Na, J., Li, Z., Xu, B.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112–8123 (2018)

    Article  Google Scholar 

  14. Xu, Y., Yang, C., Zhong, J., Wang, N., Zhao, L.: Robot teaching by teleoperation based on visual interaction and extreme learning machine. Neurocomputing 275, 2093–2103 (2018)

    Article  Google Scholar 

  15. Yang, C., Wang, X., Cheng, L., Ma, H.: Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. 47(10), 3148–3159 (2018)

    Article  Google Scholar 

  16. Hornik, K., Stinchcombe, M.L., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  17. Wang L. Fuzzy systems are universal approximators. In: IEEE International Conference on Fuzzy Systems, pp. 1163–1170 (1992)

  18. Wang, L., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Netw. 3(5), 807–814 (1992)

    Article  Google Scholar 

  19. Liu, L., Liu, Y., Tong, S.: Fuzzy-based multierror constraint control for switched nonlinear systems and its applications. IEEE Trans. Fuzzy Syst. 27(8), 1519–1531 (2019)

    Article  Google Scholar 

  20. Li, D., Liu, L., Liu, Y., Tong, S., Chen, C.L.P.: Fuzzy approximation-based adaptive control of nonlinear uncertain state constrained systems with time-varying delays. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2919490

    Article  Google Scholar 

  21. Li, K., Tong, S.: Fuzzy adaptive practical finite-time control for time delays nonlinear systems. Int. J. Fuzzy Syst. 21(4), 1013–1025 (2019)

    Article  MathSciNet  Google Scholar 

  22. Fabri, S., Kadirkamanathan, V.: Dynamic structure neural networks for stable adaptive control of nonlinear systems. IEEE Trans. Neural Netw. 7(5), 1151–1167 (1996)

    Article  Google Scholar 

  23. Liu, Y., Lu, S., Tong, S.: Neural network controller design for an uncertain robot with time-varying output constraint. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2060–2068 (2017)

    Article  Google Scholar 

  24. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Cybern. 48(6), 1839–1848 (2018)

    Article  Google Scholar 

  25. Yang, C., Wang, X., Li, Z., Li, Y., Su, C.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2125–2136 (2017)

    Article  Google Scholar 

  26. Liu, Y., Gong, M., Tong, S., Chen, C.L.P., Li, D.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)

    Article  Google Scholar 

  27. Zhou, Q., Li, H., Shi, P.: Decentralized adaptive fuzzy tracking control for robot finger dynamics. IEEE Trans. Fuzzy Syst. 23(3), 501–510 (2015)

    Article  Google Scholar 

  28. Du, P., Sun, K., Zhao, S., Liang, H.: Observer-based adaptive fuzzy control for time-varying state constrained strict-feedback nonlinear systems with dead-zone. Int. J. Fuzzy Syst. 21(3), 733–744 (2019)

    Article  MathSciNet  Google Scholar 

  29. Martínez-Rosas, J.C., Arteaga, M.A., Castillo-Sánchez, A.M.: Decentralized control of cooperative robots without velocity-force measurements. Automatica 42(2), 329–336 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Z., Yang, C., Tang, Y.: Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments. IET Control Theory Appl. 7(3), 397–410 (2013)

    Article  MathSciNet  Google Scholar 

  31. Liu, Z., Chen, C., Zhang, Y.: Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash. IEEE Trans. Fuzzy Syst. 23(3), 605–616 (2015)

    Article  Google Scholar 

  32. Li, Z., Yang, C., Su, C., Deng, S., Sun, F., Zhang, W.: Decentralized fuzzy control of multiple cooperating robotic manipulators with impedance interaction. IEEE Trans. Fuzzy Syst. 23(4), 1044–1056 (2015)

    Article  Google Scholar 

  33. Kim, E.: Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic. IEEE Trans. Fuzzy Syst. 12(3), 368–378 (2004)

    Article  Google Scholar 

  34. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach. IEEE Trans. Neural Netw. 19(10), 1712–1726 (2008)

    Article  Google Scholar 

  35. Yang, C., Luo, J., Pan, Y., Liu, Z., Su, C.Y.: Personalized variable gain control with tremor attenuation for robot teleoperation. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1759–1770 (2018)

    Article  Google Scholar 

  36. Gueaieb, W., Karray, F., Al, S.S.: A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Trans. Control Syst. Technol. 11(4), 516–528 (2003)

    Article  Google Scholar 

  37. Hou, Y., Tong, S., Li, Y.: Adaptive fuzzy backstepping control for a class of switched nonlinear systems with actuator faults. Int. J. Syst. Sci. 47(15), 3581–3590 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, Y., Tong, S., Li, D., Gao, Y.: Fuzzy adaptive control with state observer for a class of nonlinear discrete-time systems with input constraint. IEEE Trans. Fuzzy Syst. 24(5), 1147–1158 (2016)

    Article  Google Scholar 

  39. Fischle, K., Schroder, D.: An improved stable adaptive fuzzy control method. IEEE Trans. Fuzzy Syst. 7(1), 27–40 (1999)

    Article  Google Scholar 

  40. Liu, Y., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)

    Article  Google Scholar 

  41. Chen, B., Liu, X., Liu, K., Lin, C.: Direct adaptive fuzzy control of nonlinear strict-feedback systems. Automatica 45(6), 1530–1535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, H., Wang, Z., Liu, Y., Tong, S.: Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst. 316, 35–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiang, Z.P., Teel, A.R., Praly, L.: Small-gain theorem for ISS systems and applications. Math. Control Signals Syst. 7(2), 95–120 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Y., Ren, J.: Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 11(6), 783–795 (2003)

    Article  Google Scholar 

  46. Yang, Y., Zhou, C.: Robust adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems via small-gain approach. Inf. Sci. 170(2–4), 211–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, Y., Zhou, C.: Adaptive fuzzy H stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach. IEEE Trans. Fuzzy Syst. 13(1), 104–114 (2005)

    Article  Google Scholar 

  48. Huang, J.T.: Global tracking control of strict-feedback systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 23(11), 1714–1725 (2015)

    Article  Google Scholar 

  49. Teng, T., Yang, C., Dai, S., Wang, M.: Tracking performance and global stability guaranteed neural control of uncertain hypersonic flight vehicle. Int. J. Adv. Robot. Syst. 14(1), 1–11 (2017)

    Article  Google Scholar 

  50. Yang, C., Jiang, Y., Li, Z., He, W., Su, C.: Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inf. 13(3), 1162–1171 (2017)

    Article  Google Scholar 

  51. Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice hall Englewood Cliffs, NJ (1991)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant (51875457, 61903298), Shaanxi Provincial Department of Science and Technology key project in the field of industry (2018ZDXM-GY-039), National Natural Science Foundation of Shaanxi under Grant 2019JQ-341, and partially supported by Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/S001913.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Fan.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interests regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., An, Y., Wang, W. et al. T-S Fuzzy Adaptive Control Based on Small Gain Approach for an Uncertain Robot Manipulators. Int. J. Fuzzy Syst. 22, 930–942 (2020). https://doi.org/10.1007/s40815-019-00793-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00793-w

Keywords

Navigation