Skip to main content

Advertisement

Log in

Evaluation of dry and wet spell events over West Africa using CORDEX-CORE regional climate models

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study investigates the capability of regional climate models (RCMs) in simulating four extreme precipitation indices on an annual and monthly scale over West Africa during the period 1997–2014. Three global climate models (GCMs; HadGEM2-ES, NorESM1 and MPI-ESM) were dynamically downscaled using three high resolution (\(0.22^{\circ }\)) regional climate models (RCMs; RegCM4, REMO2015 and CCLM5-0-15). These simulations were from the Coordinated Output for Regional Evaluations within the Coordinated Regional Climate Downscaling Experiment framework (CORDEX-CORE) publicly available through the Earth System Grid Federation (ESGF) web portals. The capabilities of the RCMs in the representation of maximum consecutive wet day (CWD), maximum consecutive dry days (CDD), number of dry days (NDD), and number of wet days (NWD) were compared with observation/satellites datasets obtained from the Global Precipitation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM) and Tropical Applications of Meteorology using SATellite data and ground-based observations (TAMSAT). The reference datasets showed similar spatial pattern and magnitude of analyzed precipitation extremes but models exhibit different pronounced discrepancies relative to them. All RCMs consistently captured the spatial patterns of the indices but with some pronounced biases along the Guinean coast and northern parts of Niger. There exists little or no biases in the representation of annual cycle along the Guinea and Sahel for all the indices based on each of the RCMs ensemble, with the exception of RegCM4 which has a more pronounced bias in CWD. Statistical evaluation of the performance of the models over the entire West Africa with respect to the 4 indices revealed that REMO2015 models and its ensemble have overall lowest root mean square error followed by the choice of MPI-ESM GCM downscaled with either of the RCMs. REMO-HAD was found to have the best performance in the representation of consecutive dry days and number of wet days with RMSE values of 25.74 and 18.91 respectively. REMO-MPI has superior performance in the estimation of consecutive wet days and number of dry days with RMSE values of 5.38 and 20.51 respectively. Generally, REMO RCMs ensemble was found to be the best ensemble in all indices except consecutive dry days where REG4 ensembles had better performance. Operational use of these 3 RCMs are recommended with compensation for over-and underestimations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

All data used in this study are publicly available and listed in the methods section.

References

  • Adane GB, Hirpa BA, Lim C-H, Lee W-K (2020) Spatial and temporal analysis of dry and wet spells in upper Awash River Basin, Ethiopia. Water 12(11):3051

    Article  Google Scholar 

  • Adler, R., Wang, J., Sapiano, M., Huffman, G., Bolvin, D., Nelkin, E (2017) Program: global precipitation climatology project (gpcp) climate data record (cdr), version 1.3 (daily), noaa national centers for environmental information

  • Akinsanola A, Ogunjobi K, Gbode IE, Ajayi V (2015) Assessing the capabilities of three regional climate models over cordex Africa in simulating west African summer monsoon precipitation. Adv Meteorol

  • Apurv T, Mehrotra R, Sharma A, Goyal MK, Dutta S (2015) Impact of climate change on floods in the brahmaputra basin using cmip5 decadal predictions. J Hydrol 527:281–291

    Article  Google Scholar 

  • Atal KR, Zende AM (2015) Wet and dry spell characteristics of semi-arid region, western Maharashtra, India. In: 36th IAHR World Congress

  • Caloiero T, Coscarelli R (2020) Analysis of the characteristics of dry and wet spells in a Mediterranean region. Environ Process 7(3):691–701

    Article  Google Scholar 

  • Cook C, Reason CJ, Hewitson BC (2004) Wet and dry spells within particularly wet and dry summers in the south African summer rainfall region. Clim Res 26(1):17–31

    Article  Google Scholar 

  • Coppola E, Raffaele F, Giorgi F, Giuliani G, Xuejie G, Ciarlo JM, Sines TR, Torres-Alavez JA, Das S, di Sante F, et al (2021) Climate hazard indices projections based on cordex-core, cmip5 and cmip6 ensemble. Clim Dyn: 1–91

  • Diallo I, Sylla M, Giorgi F, Gaye A, Camara M (2012) Multimodel gcm-rcm ensemble-based projections of temperature and precipitation over west Africa for the early 21st century. Int J Geophys

  • Diatta S, Diedhiou CW, Dione DM, Sambou S (2020) Spatial variation and trend of extreme precipitation in west Africa and teleconnections with remote indices. Atmosphere 11(9):999

    Article  Google Scholar 

  • Doms G, Förstner J, Heise E, Herzog H, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz J-P et al (2011) A description of the nonhydrostatic regional cosmo model. Physical Parameterization, Part II, p 154

  • Doms G, Förstner J, Heise E, Herzog H, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz J et al (2013) A description of the nonhydrostatic regional cosmo-model-part ii: physical parameterizations. Deutscher Wetterdienst, Offenbach. Available from, p 15

  • Dosio A, Panitz H-J, Schubert-Frisius M, Lüthi D (2015) Dynamical downscaling of cmip5 global circulation models over cordex-africa with cosmo-clm: evaluation over the present climate and analysis of the added value. Clim Dyn 44(9):2637–2661

    Article  Google Scholar 

  • Dosio A, Jury MW, Almazroui M, Ashfaq M, Diallo I, Engelbrecht FA, Klutse NA, Lennard C, Pinto I, Sylla MB et al (2021) Projected future daily characteristics of African precipitation based on global (cmip5, cmip6) and regional (cordex, cordex-core) climate models. Clim Dyn 57(11):3135–3158

    Article  Google Scholar 

  • Eklundh L, Olsson L (2003) Vegetation index trends for the african sahel 1982–1999. Geophys Res Lett 30(8)

  • Fall CMN, Lavaysse C, Kerdiles H, Dramé MS, Roudier P, Gaye AT (2021) Performance of dry and wet spells combined with remote sensing indicators for crop yield prediction in senegal. Clim Risk Manag: 100331

  • Fuwape IA, Ogunjo ST, Oluyamo S, Rabiu A (2017) Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theor Appl Climatol 130(1):119–132

    Article  Google Scholar 

  • Fuwape I, Oluyamo S, Rabiu B, Ogunjo S (2020) Chaotic signature of climate extremes. Theor Appl Climatol 139(1):565–576

    Article  Google Scholar 

  • Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhiédiou A, Kamga A, Klutse NAB, Hewitson B et al (2014) Climatology, annual cycle and interannual variability of precipitation and temperature in cordex simulations over west Africa. Int J Climatol 34(7):2241–2257

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K et al (2013) Climate and carbon cycle changes from 1850 to 2100 in mpi-esm simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the cordex initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ (2016) Coordinated experiments for projections of regional climate change. Curr Clim Change Rep 2(4):202–210

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G et al (2012) Regcm4: model description and preliminary tests over multiple cordex domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR, et al (2009) Addressing climate information needs at the regional level: the cordex framework. World Meteorol Org (WMO) Bull 58(3):175

  • Gnitou GT, Tan G, Niu R, Nooni IK (2021) Assessing past climate biases and the added value of cordex-core precipitation simulations over Africa. Remote Sens 13(11):2058

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR, et al (1994) A description of the fifth-generation penn state/ncar mesoscale model (mm5)

  • Gutowski WJ Jr, Giorgi F, Timbal B, Frigon A, Jacob D, Kang H-S, Raghavan K, Lee B, Lennard C, Nikulin G et al (2016) Wcrp coordinated regional downscaling experiment (cordex): a diagnostic mip for cmip6. Geosci Model Dev 9(11):4087–4095

    Article  Google Scholar 

  • Heinrich G, Gobiet A (2012) The future of dry and wet spells in Europe: a comprehensive study based on the ensembles regional climate models. Int J Climatol 32(13):1951–1970

    Article  Google Scholar 

  • Heise E, Schrodin R (2002) A multi-layer soil model including freezing/melting processes. Res Act Atmos Ocean Model 32:4–11

    Google Scholar 

  • Hewitson B, Lennard C, Nikulin G, Jones C (2012) Cordex-Africa: a unique opportunity for science and capacity building. CLIVAR Exchang 17(3):6–7

    Google Scholar 

  • Holtslag A, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6(10):1825–1842

    Article  Google Scholar 

  • Holtslag A, De Bruijn E, Pan H (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575

    Article  Google Scholar 

  • Hourdin F, Musat I, Grandpeix J-Y, Polcher J, Guichard F, Favot F, Marquet P, Boone A, Lafore J-P, Redelsperger J-L et al (2010) Amma-model intercomparison project. Bull Am Meteorol Soc 91(1):95–104

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The global precipitation climatology project (gpcp) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The trmm multisatellite precipitation analysis (tmpa): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Iversen T, Bentsen M, Bethke I, Debernard J, Kirkevåg A, Seland Ø, Drange H, Kristjansson J, Medhaug I, Sand M et al (2013) The norwegian earth system model, noresm1-m-part 2: climate response and scenario projections. Geosci Model Dev 6(2):389–415

    Article  Google Scholar 

  • Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K et al (2012) Assessing the transferability of the regional climate model remo to different coordinated regional climate downscaling experiment (cordex) regions. Atmosphere 3(1):181–199

    Article  Google Scholar 

  • Jones C, Hughes J, Bellouin N, Hardiman S, Jones G, Knight J, Liddicoat S, O’connor F, Andres RJ, Bell C et al (2011) The hadgem2-es implementation of cmip5 centennial simulations. Geosci Model Dev 4(3):543–570

    Article  Google Scholar 

  • Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Khalid B, Ghaffar A (2015) Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. Int J Biometeorol 59(11):1721–1746

    Article  Google Scholar 

  • Khan AN et al (2013) Analysis of 2010-flood causes, nature and magnitude in the Khyber Pakhtunkhwa, Pakistan. Natl Haz 66(2):887–904

    Article  Google Scholar 

  • Kiehl JT (1996) Description of the ncar community climate model (ccm3). NCAR Tech, Note, p 152

  • Kim J, Waliser DE, Mattmann CA, Goodale CE, Hart AF, Zimdars PA, Crichton DJ, Jones C, Nikulin G, Hewitson B et al (2014) Evaluation of the cordex-Africa multi-rcm hindcast: systematic model errors. Clim Dyn 42(5):1189–1202

    Article  Google Scholar 

  • Klutse NAB, Ajayi VO, Gbobaniyi EO, Egbebiyi TS, Kouadio K, Nkrumah F, Quagraine KA, Olusegun C, Diasso U, Abiodun BJ, et al. (2018) Potential impact of 1.5 c and 2 c global warming on consecutive dry and wet days over west Africa. Environ Res Lett 13(5):055013

  • Klutse NAB, Owusu K, Nkrumah F, Anang OA (2021) Projected rainfall changes and their implications for rainfed agriculture in northern ghana. In press, Weather

  • Klutse NAB, Quagraine KA, Nkrumah F, Quagraine KT, Berkoh-Oforiwaa R, Dzrobi JF, Sylla MB (2021) The climatic analysis of summer monsoon extreme precipitation events over west Africa in cmip6 simulations. Earth Syst Environ 5(1):25–41

    Article  Google Scholar 

  • Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the echam general circulation model. Clim Dyn 12(8):557–572

    Article  Google Scholar 

  • Louis J-F (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17(2):187–202

    Article  Google Scholar 

  • Macherera M, Chimbari MJ, Mukaratirwa S (2017) Indigenous environmental indicators for malaria: a district study in Zimbabwe. Acta Trop 175:50–59

    Article  Google Scholar 

  • Maidment R, Black E, Young M (2017) Tamsat daily rainfall estimates (version 3.0)

  • Majewski D (1991) The europa-modell of the deutscher wetterdienst. In: ECMWF Proc. “Numerical Methods in atmospheric models.” Reading 2:147–191

  • Mariotti L, Diallo I, Coppola E, Giorgi F (2014) Seasonal and intraseasonal changes of African monsoon climates in 21st century cordex projections. Clim Change 125(1):53–65

    Article  Google Scholar 

  • McGregor JL (2015) Recent developments in variable-resolution global climate modelling. Clim Change 129(3–4):369–380

    Article  Google Scholar 

  • Mizuta R, Yoshimura H, Murakami H, Matsueda M, Tomoaki O, Kamiguchi, K., Hosaka, M., Masato, S., Yukimoto, S., Kusunoki, S., et al (2012) Climate simulations using mri-agcm3. 2 with 20-km grid. J Meteorol Soc Jpn Ser II 90:233–258

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A et al (2012) Precipitation climatology in an ensemble of cordex-Africa regional climate simulations. J Clim 25(18):6057–6078

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ecmwf and their impact on the mean and transient activity of the model in the tropics. Res Dept Tech Memor 206:1–41

    Google Scholar 

  • Ogunjo S, Fuwape I, Oluyamo S, Rabiu B (2019) Spatial dynamical complexity of precipitation and temperature extremes over Africa and south America. Asia-Pacific J Atmos Sci: 1–14

  • Oleson K, Niu G-Y, Yang Z-L, Lawrence D, Thornton P, Lawrence P, Stöckli R, Dickinson R, Bonan G, Levis S, et al. (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113(G1)

  • Osei MA, Amekudzi LK, Quansah E (2021) Characterisation of wet and dry spells and associated atmospheric dynamics at the pra river catchment of ghana, west Africa. J Hydrol Region Stud 34:100801

  • Paeth H, Hall NM, Gaertner MA, Alonso MD, Moumouni S, Polcher J, Ruti PM, Fink AH, Gosset M, Lebel T et al (2011) Progress in regional downscaling of west African precipitation. Atmos Sci Lett 12(1):75–82

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EA (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within regcm. J Geophys Res Atmos 105(D24):29579–29594

    Article  Google Scholar 

  • Panitz H-J. Dosio A, Büchner M, Lüthi D, Keuler K (2014) Cosmo-clm (cclm) climate simulations over cordex-Africa domain: analysis of the era-interim driven simulations at 0.44 and 0.22 resolution. Clim Dyn 42(11-12):3015–3038

  • Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4(1):1–8

    Google Scholar 

  • Ratan R, Venugopal V (2013) Wet and dry spell characteristics of global tropical rainfall. Water Resour Res 49(6):3830–3841

    Article  Google Scholar 

  • Reboita MS, Reale M, da Rocha RP, Giorgi F, Giuliani G, Coppola E, Nino RBL, Llopart M, Torres JA, Cavazos T (2021) Future changes in the wintertime cyclonic activity over the cordex-core southern hemisphere domains in a multi-model approach. Clim Dyn 57(5):1533–1549

    Article  Google Scholar 

  • Remedio AR, Teichmann C, Buntemeyer L, Sieck K, Weber T, Rechid D, Hoffmann P, Nam C, Kotova L, Jacob D (2019) Evaluation of new cordex simulations using an updated Köppen–Trewartha climate classification. Atmosphere 10(11):726

  • Ritter B, Geleyn J-F (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta MA, Schlese U, Schulzweida U (1996) The atmospheric general circulation model echam-4: model description and simulation of present-day climate

  • Saini R, Wang G, Yu M, Kim J (2015) Comparison of rcm and gcm projections of boreal summer precipitation over Africa. J Geophys Res Atmos 120(9):3679–3699

    Article  Google Scholar 

  • Sivakumar M (1992) Empirical analysis of dry spells for agricultural applications in west Africa. J Clim 5(5):532–539

    Article  Google Scholar 

  • Sørland SL, Brogli R, Pothapakula PK, Russo E, Van de Walle J, Ahrens B, Anders I, Bucchignani E, Davin EL, Demory M-E et al (2021) Cosmo-clm regional climate simulations in the coordinated regional climate downscaling experiment (cordex) framework: a review. Geosci Model Dev 14(8):5125–5154

    Article  Google Scholar 

  • Steiner AL, Pal JS, Rauscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the west African monsoon. Clim Dyn 33(6):869–892

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer H, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model lm. Meteorol Atmos Phys 82(1):75–96

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K et al (2013) Atmospheric component of the mpi-m earth system model: Echam6. J Adv Model Earth Syst 5(2):146–172

    Article  Google Scholar 

  • Sylla M, Giorgi F, Ruti P, Calmanti S, Dell’Aquila A (2011) The impact of deep convection on the west African summer monsoon climate: a regional climate model sensitivity study. Quart J R Meteorol Soc 137(659):1417–1430

    Article  Google Scholar 

  • Sylla MB, Giorgi F, Pal JS, Gibba P, Kebe I, Nikiema M (2015) Projected changes in the annual cycle of high-intensity precipitation events over west Africa for the late twenty-first century. J Clim 28(16):6475–6488

    Article  Google Scholar 

  • Teichmann C, Jacob D, Remedio AR, Remke T, Buntemeyer L, Hoffmann P, Kriegsmann A, Lierhammer L, Bülow K, Weber T, et al. (2020) Assessing mean climate change signals in the global cordex-core ensemble. Clim Dyn: 1–24

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Wondifraw E, Gebretsadik M, Ambachew S, Desalegn M (2017) Dry and wet spells and ridging tied-ridging of vertisol effect on sorghumyield and soil moisture variability, north Gondar, Ethiopia 10:18

  • Xue Y, De Sales F, Lau W-M, Boone A, Feng J, Dirmeyer P, Guo Z, Kim K-M, Kitoh A, Kumar V et al (2010) Intercomparison and analyses of the climatology of the west African monsoon in the west African monsoon modeling and evaluation project (wamme) first model intercomparison experiment. Clim Dyn 35(1):3–27

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using toga coare and tao data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Revi Climate Change 2(6):851–870

    Article  Google Scholar 

Download references

Funding

The authors did not receive any funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

CFO: data curation; formal analysis; visualization; investigation; methodology; writing-review and editing. OA: writing-review and editing. II: writing-review and editing. OA: writing-review and editing. SO: Conceptualization; investigation; methodology; writing-review and editing.

Corresponding author

Correspondence to Christiana Funmilola Olusegun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

All authors agreed to the publication of the manuscript in its current form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusegun, C.F., Awe, O., Ijila, I. et al. Evaluation of dry and wet spell events over West Africa using CORDEX-CORE regional climate models. Model. Earth Syst. Environ. 8, 4923–4937 (2022). https://doi.org/10.1007/s40808-022-01423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01423-5

Keywords

Navigation