Skip to main content

Advertisement

Log in

Estimating and analyzing extreme daily rain greater than a equatorial climate threshold: the case of East-Cameroon

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Extreme rains usually generate floods which cause important infrastructural damages. The estimation of extreme rains is, therefore, of paramount importance in anticipating disasters, such as floods, and thus allow a thoughtful development of the territory. This paper uses the values above a threshold approach to analyze, interpret and understand the probability distribution of the extreme rains that have recently generated many floods event in the Southeast of Cameroon. To do this, series of rainfall data recorded at 27 rainfall posts during the period 1948–2015 are analyzed. As result, statistical analyses show optimal thresholds for estimating extreme daily rainfall between 32 and 55 mm. The majority (74%) of the daily rainfall series exceeding a threshold are well adjusted by the Generalized Pareto Law. The uncertainty associated to the form parameter (k) appears to be very important and increases with the estimated threshold. In addition, spatial analysis of the centennials and decadal daily rains shows that the highest values of rain events are observed mainly on the Centre of the study area, between latitudes 4° 00ʹ and 5° 50ʹ North, and in the mountainous area of the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acero FJ, Gracia JA, Gallego MC (2011) Peaks-over-threshold study of trends in extreme rainfall over the Iberian Peninsula. J Clim 24(4):1089–1105

    Google Scholar 

  • Achite M, Buttafuoco G, Toubal KA, Luca F (2017) Precipitation spatial variability and dry areas temporal stability for different elevation classes in the Macta basin (Algeria). Environ Earth Sci 76(13):458. https://doi.org/10.1007/s12665-017-6794-3

    Google Scholar 

  • Achour K, Meddi M, Zeroual A et al (2020) Spatio-temporal analysis and forecasting of drought in the plains of northwestern Algeria using the standardized precipitation index. J Earth Syst Sci 129:42. https://doi.org/10.1007/s12040-019-1306-3

    Google Scholar 

  • Ahmad I, Zhang F, Tayyab M et al (2018) Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmos Res 213:346–360. https://doi.org/10.1016/j.atmosres.2018.06.019

    Google Scholar 

  • Bacro JN, Chaouche A (2006) Incertitude d’estimation des pluies extrêmes du pourtour méditerranéen: illustration par les données de Marseille. J Sci Hydro Log 51(3):389–405

    Google Scholar 

  • Balkema AA, Haan L (1974) Residual lifetime at great age. Ann Probab 2:792–804

    Google Scholar 

  • Beguería S, Vicente-Serrano SM (2006) Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J Appl Meteorol Climatol 45:108–124

    Google Scholar 

  • Bigot S, Brou YT, Oszwald J, Diédhiou A (2005) Facteurs de la variabilité pluviométrique en Côte d’Ivoire et relations avec certaines modifications environnementales. Sécheresse 16(1):5–13

    Google Scholar 

  • Bougara H, Hamed KB, Borgemeister C, Tischbein B, Kumar N (2020) Analyzing trend and variability of rainfall in the Tafna basin (Northwestern Algeria). Atmos 11:347. https://doi.org/10.3390/atmos11040347

    Google Scholar 

  • Caloiero T, Coscarelli R, Ferrari E (2019) Assessment of seasonal and annual rainfall trend in Calabria (southern Italy) with the ITA method. J Hydroinf. https://doi.org/10.2166/hydro.2019.138

    Google Scholar 

  • Chaouche K, Hubert P, Lang G (2002) Graphical characterization of probability distribution tails. Stoch Env Res Risk Assess 16(5):342–357

    Google Scholar 

  • Coelho CA, Ferro SCAT, Stephenson DB, Steinskog DJ (2008) Methods for exploring spatial and temporal variability of extreme events in climate data. J Clim 21:2070–2092

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, Londres (RU), p 209

    Google Scholar 

  • Coles S, Pericchi L (2003) Anticipating catastrophes through extreme value modelling. J Royal Stat Soc. Sér C Appl Stat 52(4):405–416

    Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J Royal Stat Soc, Sér B Methodol 52(3):393–442

    Google Scholar 

  • Derdous O, Bouamrane A, Mrad D (2020) Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: case of the Cheliff basin–Algeria. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00951-2

    Google Scholar 

  • Egozcue JJ, Ramis C (2001) Bayesian hazard analysis of heavy precipitation in eastern Spain. Int J Climatol 21:1263–1279

    Google Scholar 

  • Elouissi A, Habi M, Benaricha B, Boualem SA (2017) Climate change impact on rainfall spatio-temporal variability (Macta watershed case, Algeria). Arab J Geosci 10(22):496. https://doi.org/10.1007/s12517-017-3264-x

    Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Berlin (Allemagne), p 634

    Google Scholar 

  • Geremew GM, Mini S, Abegaz A (2020) Spatio-temporal variability and trends in rainfall extremes in Enebsie Sar Midir district, Northwest Ethiopia. Mod Earth Syst Environ 6(2):1177–1187. https://doi.org/10.1007/s40808-020-00749-2

    Google Scholar 

  • Goula BTA, Konan B, Brou YT, Savané I, Fadika V, Srohourou B (2007) Estimation des pluies exceptionnelles journalières en zone tropicale: cas de la Côte d’Ivoire par comparaison des lois lognormale et de Gumbel. J Sci Hydrol 52(2):49–67

    Google Scholar 

  • Gyamfi C, Amaning-Adjei K, Anornu GK et al (2019) Evolutional characteristics of hydro-meteorological drought studied using standardized indices and wavelet analysis. Model Earth Syst Environ 5:455–469. https://doi.org/10.1007/s40808-019-00569-z

    Google Scholar 

  • Jemai H, Ellouze M, Abida H, Laignel B (2018) Spatial and temporal variability of rainfall: case of Bizerte-Ichkeul Basin (Northern Tunisia). Arab J Geosci 11(8):177. https://doi.org/10.1007/s12517-018-3482-x

    Google Scholar 

  • Kebede A, Raju UJP, Korecha D, Nigussie M (2020) Developing new drought indices with and without climate signal information over the Upper Blue Nile. Model Earth Syst Environ 6:151–161. https://doi.org/10.1007/s40808-019-00667-y

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, Londres (RU), p 272

    Google Scholar 

  • Khalil A, Ullah S, Khan S, Manzoor S, Gul A, Shafiq M (2017) Applying time series and a non-parametric approach to predict pattern, variability, and number of rainy days per month. Pol J Environ Stud 26:635–642. https://doi.org/10.15244/pjoes/65155

    Google Scholar 

  • Khedimallah A, Meddi M, Mahé G (2020) Characterization of the interannual variability of precipitation and runoff in the Cheliff and Medjerda basins (Algeria). J Earth Syst Sci 129:134. https://doi.org/10.1007/s12040-020-01385-1

    Google Scholar 

  • Koutsoyiannis D (2004) Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. J Sci Hydrol 49(4):591–610

    Google Scholar 

  • L’hôte Y, Mahé G, Some B, Triboule JP (2002) Analysis of a Sahelian annual rainfall index from 1896 to 2000; the drought continues. J Sci Hydrol 47:563–572

    Google Scholar 

  • Machiwal D, Jha MK (2008) Comparative evaluation of statistical tests for time series analysis: application to hydrological time series. Hydrol Sci J 53:353–366. https://doi.org/10.1623/hysj.53.2.353

    Google Scholar 

  • Maeng SJ, Azam M, Kim HS, Hwang JH (2017) Analysis of changes in spatio-temporal patterns of drought across South Korea. Water 9:679. https://doi.org/10.3390/w9090679

    Google Scholar 

  • Mekonen AA, Berlie AB, Ferede MB (2020) Spatial and temporal drought incidence analysis in the northeastern highlands of Ethiopia. Geoenviron Dis 7:10. https://doi.org/10.1186/s40677-020-0146-4

    Google Scholar 

  • Mellak S, Souag-Gamane D (2020) Spatio-temporal analysis of maximum drought severity using Copulas in Northern Algeria. J Water Clim Chang. https://doi.org/10.2166/wcc.2020.070

    Google Scholar 

  • Muller A, Arnaud P, Lang M, Lavabre J (2009) Uncertainties of extreme rainfall quantiles estimated by a stochastic rainfall model and by a generalized Pareto distribution. J Sci Hydrol 54(3):417–429

    Google Scholar 

  • Muller A (2006) Comportement de la distribution asymptotique des pluies extrêmes en France. Thèse de l'Université de Montpellier II, pp. 182

  • Nair SC, Mirajkar AB (2020) Spatio–temporal rainfall trend anomalies in Vidarbha region using historic and predicted data: a case study. Model Earth Syst Environ. https://doi.org/10.1007/s40808-020-00928-1

    Google Scholar 

  • Ndam Ngoupayou JR, Dzana J, Kpoumie A, Tanwi Ghogomu R, Fouepe Takounjou A, Braun JJ, Ekodeck GE (2016) Present-day sediment dynamic of the Sanaga catchment (Cameroon): from the total suspended sediment (TSS) to erosion balance. Hydrol Sci J 61(6):1080–1093

    Google Scholar 

  • Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys Res Lett 33:L10801. https://doi.org/10.1029/2005GL024251

    Google Scholar 

  • Oyebande L (1982) Deriving rainfall intensity-duration-frequency relationships and estimates for regions with inadequate data. J Sci Hydrol 27(3):353–367

    Google Scholar 

  • Pathak AA, Dodamani BM (2020) Trend analysis of rainfall, rainy days and drought: a case study of Ghataprabha River Basin, India. Model Earth Syst Environ 6:1–16. https://doi.org/10.1007/s40808-020-00798-7

    Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Google Scholar 

  • Puech C, Chabi-Gonni D (1984) Courbes hauteur de pluie-durée-fréquence en Afrique de l’Ouest pour des pluies de durée 5 mn à 24 heures. Collection “Série hydrologie.” CIEH, Ouagadougou (Burkina Faso), p 155

    Google Scholar 

  • Re M, Barros VR (2009) Extreme rainfalls in SE South America. Clim Change 96(1–2):119–136

    Google Scholar 

  • Rosbjerg D, Correa J, Rasmussen PF (1992) Justification des formules de probabilité empirique basées sur la médiane de la statistique d’ordre. Rev Sci Eau 5(4):529–540

    Google Scholar 

  • Serencam U (2019) Innovative trend analysis of total annual rainfall and temperature variability case study: Yesilirmak region. Turkey Arab J Geosci 12:704. https://doi.org/10.1007/s12517-019-4903-1

    Google Scholar 

  • Serinaldi F, Kilsby CG (2014) Rainfall extremes: toward reconciliation after the battle of distributions. Water Resour Res 50(1):336–352

    Google Scholar 

  • Shifteh Somee B, Ezani A, Tabari H (2012) Spatio-temporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. https://doi.org/10.1016/j.atmosres.2012.04.016

    Google Scholar 

  • Sisson SA, Perrichi LR, Coles S (2006) A case for a reassessment of the risk of extreme hydrological hazards in the Caribbean. Stoch Env Res Risk Assess 20(4):296–306

    Google Scholar 

  • Tomassini L, Jacob D (2009) Spatial analysis of trends in extreme precipitation events in high-resolution climate model results and observations for Germany. J Geophysl Res 114:D12113. https://doi.org/10.1029/2008JD010652

    Google Scholar 

  • Tramblay Y, Badi W, Driouech F, El Adlouni S, Neppel L, Servat E (2012) Climate change impacts on extreme precipitation in Morocco. Glob Planet Change 82–83:104–114. https://doi.org/10.1016/j.gloplacha.2011.12.002

    Google Scholar 

  • Vitolo R, Ruti PM, Dell’Aquila A, Felici M, Lucarini V, Speranza A (2009) Accessing extremes of mid-latitudinal wave activity: methodology and application. Tellus, Série A 61(1):35–49

    Google Scholar 

  • WMO (2012) Standardized precipitation index user guide. In: Svoboda M, Hayes M, Wood D (Eds.). (WMO-No. 1090), Geneva.

  • Wotling G, Bouvier C, Danloux J, Fritsch JM (2000) Regionalization of extreme precipitation distribution using the principal components of the topographical environment. J Sci Hydrol 233(1):86–101

    Google Scholar 

  • Wu H, Hayes MJ, Wilhite DA, Svoboda MD (2005) The effect of the length of recordon the standardized precipitation index calculation. Int J Climatol 25:505–520

    Google Scholar 

  • Xu K, Milliman JD, Xu H (2010) Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Glob Planet Change 73:219–223. https://doi.org/10.1016/j.gloplacha.2010.07.002

    Google Scholar 

  • Zhang C, Zhu X, Fu G, Zhou H, Wang H (2014) The impacts of climate change on water diversion strategies for a water deficit reservoir. J Hydroinf 16:872–889. https://doi.org/10.2166/hydro.2013.053

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Directorate of Meteorology and the Institute of Geological and Mining Research of Cameroon (IGMR) for the provision of rainfall data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kouassy Kalédjé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalédjé, P.S.K., Noudja, T., Ngoupayou, J.R.N. et al. Estimating and analyzing extreme daily rain greater than a equatorial climate threshold: the case of East-Cameroon. Model. Earth Syst. Environ. 8, 4497–4507 (2022). https://doi.org/10.1007/s40808-022-01390-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-022-01390-x

Keywords

Navigation