Skip to main content
Log in

Dynamical study of a prey–predator model incorporating nonlinear prey refuge and additive Allee effect acting on prey species

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

In this study, we have analyzed a mathematical model on predator–prey interactions incorporating prey refuge and additive Allee effect on the prey species. The various dynamical behaviors of the system have analyzed, considering the prey refuge is proportional to both the prey and predator species with Beddington–DeAngelis functional response. None, single, or two coexistence equilibria can exist at the first quadrant of the phase space considering strong additive Allee effect in the system. The permanence, local stability, saddle-node bifurcation, existence of a stable limit cycle and Hopf bifurcation are examined under some parametric conditions. We have also calculated the first Lyapunov number to define the nature of Hopf bifurcating periodic solution. Moreover, it has established a parameter subset at which the dynamical system may have a cusp point of co dimension 2 (Bogdanov–Takens bifurcation). Finally, we have executed an adequate numerical simulation to authenticate our analytical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allee WC (1931) Animal aggregations: a study in general sociology. Chicago Press, Chicago

    Google Scholar 

  • Allee WC (1938) The social life of animals. WW Norton & Co, New York

    Google Scholar 

  • Allee WC, Park O, Emerson AE, Park T, Schmidt KP (1949) Principles of animal ecology. WB Saundere Co Ltd, Philadelphia

    Google Scholar 

  • Beddington JR (1975) Mutual interference between parasites or predators and its effect on searching efficiency. J Anim Ecol 44(1):331–340

    Google Scholar 

  • Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evol 22(4):185–191

    Google Scholar 

  • Birkhoff GG, Rota (1975) Ordinary differential equations. Hafner Press, Michigan

    Google Scholar 

  • Cai Y, Zhao C, Wang W, Wang J (2015) Dynamics of a Leslie-Gower predator-prey model with additive Allee effect. Appl Math Model 39(7):2092–2106

    Google Scholar 

  • Carr J (1981) Applications of centre manifold theory. Springer, Berlin

    Google Scholar 

  • Celik C, Duman O (2009) Allee effect in a discrete-time predator-prey system. Chaos Solitons Fractals 40(4):1956–1962

    Google Scholar 

  • Chen L, Chen F, Chen L (2010) Qualitative analysis of a predator-prey model with Holling type ii functional response incorporating a constant prey refuge. Nonlinear Anal Real World Appl 11(1):246–252

    Google Scholar 

  • Chow SN, Hale JK (1982) Methods of bifurcation theory, vol 251. Springer, Berlin

    Google Scholar 

  • Chow SN, Li C, Wang D (1994) Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge

    Google Scholar 

  • Collings JB (1995) Bifurcation and stability analysis of a temperature-dependent mite predator-prey interaction model incorporating a prey refuge. Bull Math Biol 57(1):63–76

    Google Scholar 

  • Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends Ecol Evol 14(10):405–410

    Google Scholar 

  • Courchamp F, Grenfell BT, Clutton-Brock T (2000) Impact of natural enemies on obligately cooperative breeders. Oikos 91(2):311–322

    Google Scholar 

  • Das KP (2016) Complex dynamics and its stabilization in an eco-epidemiological model with alternative food. Model Earth Syst Environ 2(4):1–12

    Google Scholar 

  • De Angelis D, Goldstein R (1975) A model for tritrophic interactions. Ecology 56:881–892

    Google Scholar 

  • Dennis B (1989) Allee effects: population growth, critical density, and the chance of extinction. Nat Resour Model 3(4):481–538

    Google Scholar 

  • Freedman H, Waltman P (1984) Persistence in models of three interacting predator-prey populations. Math Biosci 68(2):213–231

    Google Scholar 

  • Gard TC, Hallam TG (1979) Persistence in food webs Lotka-Volterra food chains. Bull Math Biol 41(6):877–891

    Google Scholar 

  • González-Olivares E, Ramos-Jiliberto R (2003) Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol Model 166(1–2):135–146

    Google Scholar 

  • Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151(6):487–496

    Google Scholar 

  • Haque M, Sarwardi S (2016) Effect of toxicity on a harvested fishery model. Model Earth Syst Environ 2(3):122

    Google Scholar 

  • Haque M, Rahman MS, Venturino E, Li BL (2014) Effect of a functional response-dependent prey refuge in a predator-prey model. Ecol Complex 20:248–256

    Google Scholar 

  • Hassard B, Kazarinof D, Wan Y (1981) Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 97(S45):5–60

    Google Scholar 

  • Indrajaya D, Suryanto A, Alghofari AR (2016) Dynamics of modified Leslie-Gower predator-prey model with Beddington-Deangelis functional response and additive Allee effect. Int J Ecol Dev 31(3):60–71

    Google Scholar 

  • Javidi M (2013) Nematnyamorady, Allee effects in a predator prey system with a saturated recovery function and harvesting. Int J Adv Math Sci 1(2):33–44

    Google Scholar 

  • Lai X, Liu S, Lin R (2010) Rich dynamical behaviours for predator-prey model with weak Allee effect. Appl Anal 89(8):1271–1292

    Google Scholar 

  • Lamont BB, Klinkhamer PG, Witkowski E (1993) Population fragmentation may reduce fertility to zero in Banksia goodiia demonstration of the Allee effect. Oecologia 94(3):446–450

    Google Scholar 

  • Ma Z, Li W, Zhao Y, Wang W, Zhang H, Li Z (2009) Effects of prey refuges on a predator-prey model with a class of functional responses: the role of refuges. Math Biosci 218(2):73–79

    Google Scholar 

  • Manarul HM, Sarwardi S (2018) Dynamics of a harvested prey-predator model with prey refuge dependent on both species. Int J Bifurc Chaos 28(12):1830040

    Google Scholar 

  • Merdan H, Duman O, Akın Ö, Çelik C (2009) Allee effects on population dynamics in continuous (overlapping) case. Chaos Solitons Fractals 39(4):1994–2001

    Google Scholar 

  • Mikko Kuussaari MC, Saccheri Ilik, Hanski I (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos 82(2):384–392

    Google Scholar 

  • Molla H, Rahman MS, Sarwardi S (2019) Dynamics of a predator-prey model with Holling type ii functional response incorporating a prey refuge depending on both the species. Int J Nonlinear Sci Numer Simul 20(1):1–16

    Google Scholar 

  • Molla H, Rahman MS, Sarwardi S (2020) Incorporating prey refuge in a prey-predator model with Beddington-Deangelis type functional response: a comparative study on intra-specific competition. Discontin Nonlinear Complex 9(1):395–419

    Google Scholar 

  • Murray JD (1989) Mathematical Biology I: An Introduction, Springer, New York

  • Pal PJ, Mandal PK (2014) Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-Deangelis functional response and strong Allee effect. Math Comput Simul 97:123–146

    Google Scholar 

  • Pal PJ, Saha T, Sen M, Banerjee M (2012) A delayed predator-prey model with strong Allee effect in prey population growth. Nonlinear Dyn 68(1–2):23–42

    Google Scholar 

  • Perko L (2001) Differential equations and dynamical systems. Springer, Berlin

    Google Scholar 

  • Pusawidjayanti K, Suryanto A, Wibowo R (2015) Dynamics of a predator-prey model incorporating prey refuge, predator infection and harvesting. Appl Math Sci 9(76):3751–3760

    Google Scholar 

  • Ramos-Jiliberto R (2003) Population dynamics of prey exhibiting inducible defenses: the role of associated costs and density-dependence. Theor Popul Biol 64(2):221–231

    Google Scholar 

  • Rocha JL, Fournier-Prunaret D, Taha AK (2013) Strong and weak Allee effects and chaotic dynamics in Richards’ growths. Discrete & Continuous Dynamical Systems-B 18(9):2397

    Google Scholar 

  • Rudin W (1976) Principles of Mathematical Analysis: International Series in Pure and Applied Mathematics, McGraw-Hill Education

  • Sahoo B (2015) Role of additional food in eco-epidemiological system with disease in the prey. Appl Math Comput 259:61–79

    Google Scholar 

  • Sahoo B, Poria S (2016) Effects of additional food in a susceptible-exposed-infected prey-predator model. Model Earth Syst Environ 2(3):160

    Google Scholar 

  • Sarwardi S, Mandal PK, Ray S (2012) Analysis of a competitive prey-predator system with a prey refuge. Biosystems 110(3):133–148

    Google Scholar 

  • Sarwardi S, Mandal MR, Gazi NH (2016) Dynamical behaviour of an ecological system with Beddington-Deangelis functional response. Model Earth Syst Environ 2(2):106

    Google Scholar 

  • Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple population models. Theor Popul Biol 64(2):201–209

    Google Scholar 

  • Shi J, Shivaji R (2006) Persistence in reaction diffusion models with weak Allee effect. J Math Biol 52(6):807–829

    Google Scholar 

  • Sotomayor J (1973) Generic bifurcations of dynamical systems. In: Dynamical systems, Elsevier, pp 561–582

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14(10):401–405

    Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the allee effect? Oikos 87(1):185–190

    Google Scholar 

  • Tewa JJ, Djeumen VY, Bowong S (2013) Predator-prey model with Holling response function of type ii and sis infectious disease. Appl Math Model 37(7):4825–4841

    Google Scholar 

  • Trisdiani P, Trisilowati AS (2014) Dynamics of harvested predator-prey system with disease in predator and prey in refuge. Int J Ecol Econ Stat 33:47–57

    Google Scholar 

  • Van Voorn GA, Hemerik L, Boer MP, Kooi BW (2007) Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect. Math Biosci 209(2):451–469

    Google Scholar 

  • Venturino E (1995) Epidemics in predator-prey models: diseases in the prey. Math Popul Dyn Anal Heterog 1:381–393

    Google Scholar 

  • Wang MH, Kot M (2001) Speeds of invasion in a model with strong or weak Allee effects. Math Biosci 171(1):83–97

    Google Scholar 

  • Wang W, Yn Zhu, Cai Y, Wang W (2014) Dynamical complexity induced by Allee effect in a predator-prey model. Nonlinear Anal Real World Appl 16:103–119

    Google Scholar 

  • Wiggins S (1991) Introd Appl Nonlinear Dyn Syst Chaos. Springer-Verlag, USA

    Google Scholar 

  • Zhou SR, Liu YF, Wang G (2005) The stability of predator-prey systems subject to the Allee effects. Theor Popul Biol 67(1):23–31

    Google Scholar 

Download references

Acknowledgements

The corresponding author Dr. Sarwardi is grateful to the Department of Mathematics & Statistics, Aliah University for extending support to perform the present work. Mr. Molla is highly thankful to Department of Mathematics, Manbhum Mahavidyalaya for giving opportunity to do this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahabuddin Sarwardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A1. The values of the coefficients ABCD and E used in Eq. (5) are given bellow

$$\begin{aligned} A= & {} -er\delta \, \left( em-bd \right) ,\\ B= & {} \left( \left( K-h \right) \left( em-bd \right) \delta -cd \right) er,\\ C= & {} -bdehKr\delta +bdeKnr\delta +{e}^{2}hKmr\delta -{e}^{2}Kmnr\delta \\- & {} cdehr+cdeKr+b{d}^{2}K-deKm, \\ D= & {} cdehKr-cdeKnr+b{d}^{2}hK-dehKm+a{d}^{2}K,\\ E= & {} ad^2hK. \end{aligned}$$

A2. The constants \(\alpha _{i}\) \((i=1,2,3,4)\) given in local stability section are as follows

$$\begin{aligned}&\alpha _{1}=d \big ( -ce{h}^{2}r{x_{2}^{*}}^{2}-2\,cehr{x_{2}^{*}}^{3}+ceKnr{x_{2}^{*}}^{2}-cer{x_{2}^{*}}^{4}\\&\qquad +bd{h}^{2}Kx_{2}^{*}+2\,bdhK{x_{2}^{*}}^{2}+bdK{x_{2}^{*}}^{3}\\&\qquad +cd{h}^{2}Ky_{2}^{*}+2\,cdhKx_{2}^{*}y_{2}^{*}+cdK{x_{2}^{*}}^{2}y_{2}^{*}-e{h}^{2}Kmx_{2}^{*}\\&\qquad -2\,ehKm{x_{2}^{*}}^{2}-eKm{x_{2}^{*}}^{3} \big ),\\&\alpha _{2}=x_{2}^{*} \big ( -bde{h}^{2}r{x_{2}^{*}}^{2}-2\,bdehr{x_{2}^{*}}^{3}+bdeKnr{x_{2}^{*}}^{2}\\&\qquad -bder{x_{2}^{*}}^{4}+{e}^{2}{h}^{2}mr{x_{2}^{*}}^{2}+2\,{e}^{2}hmr{x_{2}^{*}}^{3}\\&\qquad -{e}^{2}Kmnr{x_{2}^{*}}^{2}+{e}^{2}mr{x_{2}^{*}}^{4}+2\,b{d}^{2}{h}^{2}Ky_{2}^{*}\\&\qquad +4\,b{d}^{2}hKx_{2}^{*}y_{2}^{*}+2\,b{d}^{2}K{x_{2}^{*}}^{2}y_{2}^{*}-2\,de{h}^{2}Kmy_{2}^{*}\\&\qquad -4\,dehKmx_{2}^{*}y_{2}^{*}-2\,deKm{x_{2}^{*}}^{2}y_{2}^{*} \big ),\\&\alpha _{3}=c{d}^{2}e{h}^{2}Ky_{2}^{*}+2\,c{d}^{2}ehKx_{2}^{*}y_{2}^{*}+c{d}^{2}eK{x_{2}^{*}}^{2}y_{2}^{*}\\&\qquad +{e}^{2}{h}^{2}mr{x_{2}^{*}}^{2}+2\,{e}^{2}hmr{x_{2}^{*}}^{3}-{e}^{2}Kmnr{x_{2}^{*}}^{2}\\&\qquad +{e}^{2}mr{x_{2}^{*}}^{4}-b{d}^{2}{h}^{2}Ky_{2}^{*}-2\,b{d}^{2}hKx_{2}^{*}y_{2}^{*}-b{d}^{2}K{x_{2}^{*}}^{2}y_{2}^{*}, \\&\alpha _{4}=y_{2}^{*} \big ( b{d}^{2}e{h}^{2}Kx_{2}^{*}+2\,b{d}^{2}ehK{x_{2}^{*}}^{2}+b{d}^{2}eK{x_{2}^{*}}^{3}\\&\qquad -d{e}^{2}{h}^{2}Kmx_{2}^{*}-2\,d{e}^{2}hKm{x_{2}^{*}}^{2}-d{e}^{2}Km{x_{2}^{*}}^{3}\\&\qquad +{e}^{2}{h}^{2}mr{x_{2}^{*}}^{2}+2\,{e}^{2}hmr{x_{2}^{*}}^{3}-{e}^{2}Kmnr{x_{2}^{*}}^{2}\\&\qquad +{e}^{2}mr{x_{2}^{*}}^{4}-b{d}^{2}{h}^{2}Ky_{2}^{*}-2\,b{d}^{2}hKx_{2}^{*}y_{2}^{*}\\&\qquad -b{d}^{2}K{x_{2}^{*}}^{2}y_{2}^{*} \big ). \end{aligned}$$

A3. The Jacobian matrix of the system (1) at \((x^{*},y^{*})\) is as follows

$$\begin{aligned} J^{*}= \left[ \begin{array}{cc} A_{11} &{} A_{12}\\ A_{21} &{} A_{22}\end{array} \right] , \end{aligned}$$

where

$$\begin{aligned}&A_{11}= rx^{*} \left( -\frac{1}{K}+{\frac{n}{ \left( x^{*}+h \right) ^{2}}} \right) +{\frac{{d}^{2}y^{*}b}{{e}^{2}mx^{*}}},\\&A_{12}={\frac{\delta \,y^{*}d}{e \left( -\delta \,y^{*}+1 \right) }}-{\frac{d}{e}}+{\frac{{d}^{2}y^{*} \left( -b\delta \,x^{*}+c \right) }{{e}^{2}mx^{*} \left( -\delta \,y^{*}+1 \right) }},\\&A_{21}=\left( {\frac{d}{x^{*}}}-{\frac{{d}^{2}b}{emx^{*}}} \right) y^{*},\\&A_{22}=\left( -{\frac{\delta \,d}{-\delta \,y^{*}+1}}-{\frac{{d}^{2} \left( -b\delta \,x^{*}+c \right) }{emx^{*} \left( -\delta \,y^{*}+1 \right) }} \right) y^{*}. \end{aligned}$$

A4 The expressions of \(D^{2}F(E^{*},\delta _{sn})(\chi ,\chi )\) and \(D^{3}F(E^{*},\delta _{sn})(\chi ,\chi ,\chi )\) are defined by the following quantities

$$\begin{aligned}&D^{2}F(E^{*},\delta _{sn})(\chi ,\chi )\\&\quad =\left[ \begin{array}{c}{\frac{\partial ^2 F_{1}}{\partial x^{2}}\chi _{1}^{2}+\frac{\partial ^2 F_{1}}{\partial x \partial y}\chi _{1}\chi _{2}+\frac{\partial ^2 F_{1}}{\partial y \partial x}\chi _{2}\chi _{1}+\frac{\partial ^2 F_{1}}{\partial y^{2}}\chi _{2}^{2}}\\ {\frac{\partial ^2 F_{2}}{\partial x^{2}}\chi _{1}^{2}+\frac{\partial ^2 F_{2}}{\partial x \partial y}\chi _{1}\chi _{2}+\frac{\partial ^2 F_{2}}{\partial y \partial x}\chi _{2}\chi _{1}+\frac{\partial ^2 F_{2}}{\partial y^{2}}\chi _{2}^{2}}\end{array} \right] ,\\&D^{3}F(E^{*},\delta _{sn})(\chi ,\chi ,\chi )\\&\quad =\left[ \begin{array}{c}{\frac{\partial ^3 F_{1}}{\partial x^{3}}\chi _{1}^{3}+\frac{\partial ^3 F_{1}}{\partial x^{2} \partial y}\chi _{1}^{2}\chi _{2}+\frac{\partial ^3 F_{1}}{\partial y^{2} \partial x}\chi _{2}^{2}\chi _{1}+\frac{\partial ^3 F_{1}}{\partial y^{3}}\chi _{2}^{3}}\\ {\frac{\partial ^3 F_{2}}{\partial x^{3}}\chi _{1}^{3}+\frac{\partial ^3 F_{2}}{\partial x^{2} \partial y}\chi _{1}^{2}\chi _{2}+\frac{\partial ^3 F_{2}}{\partial y^{2} \partial x}\chi _{2}^{2}\chi _{1}+\frac{\partial ^3 F_{2}}{\partial y^{3}}\chi _{2}^{3}}\end{array} \right] . \end{aligned}$$

A5. The expressions of \(l_{ij}\) and \(m_{ij}\) \((i,j=0,1,2,3)\), shown in  "Behavior of Hopf bifurcation periodic solution" section are as follows

$$\begin{aligned}&l_{10}=r \left( 1-{\frac{x^{*}}{K}}-{\frac{n}{x^{*}+h}} \right) +rx^{*} \left( -{K}^{-1 }+{\frac{n}{ \left( x^{*}+h \right) ^{2}}} \right) \\&\qquad +{\frac{m \left( \delta _{hb}\,y^{*}-1 \right) y^{*} \left( cy^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{2}}} ,\\&l_{01}=\frac{m \left( -b{\delta _{hb}}^{2}x^{*}{y^{*}}^{2}+2\,b\delta _{hb}\,x^{*}y^{*}+c{y^{*}}^{2}\delta _{hb}+ 2\,ay^{*}\delta _{hb}-bx^{*}-a \right) x^{*}}{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+a \right) ^{2}}, \\&l_{20}={\frac{r \left( - \left( x^{*}+h \right) ^{2}+Kn \right) }{K \left( x^{*}+ h \right) ^{2}}}-{\frac{rx^{*}n}{ \left( x^{*}+h \right) ^{3}}}\\&+{\frac{m \left( \delta _{hb}\,y^{*}-1 \right) ^{2}y^{*}b \left( cy^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}} ,\\&l_{11}={\frac{m \left( -b{\delta _{hb}}^{2}x^{*}{y^{*}}^{2}+b\delta _{hb}\,x^{*}y^{*}+c{y^{*}}^{2}\delta _{hb}+2\, ay^{*}\delta _{hb}-a \right) }{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+a \right) ^{2}}}\\&\qquad +{\frac{m \left( b{\delta _{hb}}^{2}x^{*}y^{*}+ \left( -bx^{*}-cy^{*}+a \right) \delta _{hb}+2\,c \right) \left( \delta _{hb}\,y^{*}-1 \right) y^{*}bx^{*}}{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+a \right) ^{3}}},\\&l_{02}={\frac{mx^{*} \left( a\delta _{hb}+c \right) \left( bx^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}},\\&l_{30}=-{\frac{rn}{ \left( x^{*}+h \right) ^{3}}}\\&\qquad +{\frac{rx^{*}n}{ \left( x^{*}+h \right) ^{4}}}+{\frac{m \left( \delta _{hb}\,y^{*}-1 \right) ^{3}y^{*}{b}^{2}}{ \left( \left( -b\delta _{hb}\,x^{*}+c \right) y^{*}+bx^{*}+a \right) ^{3}}}\\&\qquad +{\frac{mx^{*} \left( \delta _{hb}\,y^{*}-1 \right) ^{4}y^{*}{b}^{3}}{ \left( b \left( -\delta _{hb} \,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}},\\&l_{21}={\frac{m \left( \delta _{hb}\,y^{*}-1 \right) b \left( 3\,\delta _{hb}\,y^{*}-1 \right) }{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+a \right) ^{2}}}\\&\qquad +{\frac{m \left( \delta _{hb}\,y^{*}-1 \right) ^{2}b \left( 6\,b\delta _{hb}\,x^{*}y^{*}-bx^{*} -2\,cy^{*} \right) }{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+a \right) ^{3}}}\\&\qquad +3{\frac{mx^{*} \left( \delta _{hb}\,y^{*}-1 \right) ^{3}y^{*}{b}^{2} \left( b\delta _{hb}\, x^{*}-c \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4 }}},\\&l_{12}={\frac{m \left( {x^{*}}^{2} \left( \delta _{hb}\,y^{*}-1 \right) {b}^{2}+2\,x^{*}y^{*} \left( a\delta _{hb}+c \right) b+a \left( cy^{*}+a \right) \right) \left( a \delta _{hb}+c \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}},\\&l_{03}={\frac{mx^{*} \left( b\delta _{hb}\,x^{*}-c \right) \left( a\delta _{hb}+c \right) \left( bx^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}},\\&m_{10}=-{\frac{em \left( \delta _{hb}\,y^{*}-1 \right) \left( cy^{*}+a \right) y^{*}}{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{2}}},\\&m_{01}= -{\frac{emx^{*}y^{*} \left( a\delta _{hb}+c \right) }{ \left( \left( -b\delta _{hb}\,y^{*}+b \right) x^{*}+cy^{*}+a \right) ^{2}}}\\&\qquad +{\frac{em \left( -\delta _{hb}\,x^{*}y^{*}+x^{*} \right) }{a+b \left( -\delta _{hb}\,x^{*}y^{*}+x^{*} \right) +cy^{*}}}-d,\\&m_{20}=-{\frac{em \left( \delta _{hb}\,y^{*}-1 \right) ^{2}b \left( cy^{*}+a \right) y^{*} }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}},\\&m_{11}=-{\frac{e \left( a\delta _{hb}+c \right) \left( bx^{*} \left( \delta _{hb}\,y^{*}-1 \right) +cy^{*}+a \right) my^{*}}{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}}\\&\qquad -{\frac{e \left( a\delta _{hb}+c \right) \left( bx^{*} \left( \delta _{hb}\,y^{*}-1 \right) +cy^{*}+a \right) m}{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}},\\&m_{02}=-{\frac{emx^{*} \left( a\delta _{hb}+c \right) \left( bx^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{3}}},\\&m_{30}=-{\frac{em \left( \delta _{hb}\,y^{*}-1 \right) ^{3}{b}^{2} \left( cy^{*}+a \right) y^{*}}{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}},\\&m_{21}=-{\frac{e \left( b\delta _{hb}\,x^{*}y^{*}-bx^{*}+2\,cy^{*}+2\,a \right) b \left( \delta _{hb} \,y^{*}-1 \right) \left( a\delta _{hb}+c \right) my^{*}}{ \left( -b\delta _{hb}\,x^{*}y^{*}+bx^{*}+cy^{*}+ a \right) ^{4}}}\\&\qquad -{\frac{em \left( \delta _{hb}\,y^{*}-1 \right) ^{2}b \left( cy^{*}+a \right) }{ \left( b \left( 1-\delta _{hb}\,y^{*} \right) x^{*}+cy^{*}+a \right) ^{3}}},\\&m_{12}=-{\frac{e \left( {x^{*}}^{2} \left( \delta _{hb}\,y^{*}-1 \right) {b}^{2}+2\,x^{*}y^{*} \left( a\delta _{hb}+c \right) b+a \left( cy^{*}+a \right) \right) \left( a \delta _{hb}+c \right) m}{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}},\\&m_{03}=-{\frac{emx^{*} \left( b\delta _{hb}\,x^{*}-c \right) \left( a\delta _{hb}+c \right) \left( bx^{*}+a \right) }{ \left( b \left( -\delta _{hb}\,y^{*}+1 \right) x^{*}+cy^{*}+a \right) ^{4}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molla, H., Rahman, M.S. & Sarwardi, S. Dynamical study of a prey–predator model incorporating nonlinear prey refuge and additive Allee effect acting on prey species. Model. Earth Syst. Environ. 7, 749–765 (2021). https://doi.org/10.1007/s40808-020-01049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-020-01049-5

Keywords

Mathematics Subject Classification

Navigation