Skip to main content
Log in

Exploring fire incidence in Portugal using generalized additive models for location, scale and shape (GAMLSS)

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Portuguese wildfires are responsible for large environmental, ecological and socio-economic impacts. This study explores the fire-environment relationships by modeling fire incidence (FI) against vegetation, precipitation and anthropogenic drivers. The mean, dispersion and asymmetry of the FI distribution were modelled on the predictors using the generalized additive models for location, scale and shape. Results show that increasing forests and shrublands increases FI and decreases its dispersion, highlighting high FI regions. Fire absence decreases with all the predictors except human influence, indicating its control on fire hazard. Rain-fed versus irrigated agriculture may have a dual role on FI, pointing the need to explore them separately when modeling FI drivers. Precipitation has a non-linear effect on FI distribution parameters. The role of forests on fire distribution asymmetry needs to be further explored. Modelling the previously unexplored drivers of dispersion and asymmetry of FI gives new insights into fire regime studies and fire-environmental relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ager AA, Preisler HK, Arca B et al (2014) Wildfire risk estimation in the Mediterranean area. Environmetrics 25:384–396. https://doi.org/10.1002/env.2269

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. Autom Control IEEE Trans 19:716–723

    Article  Google Scholar 

  • Ali MM, Woo J, Nadarajah S (2008) Generalized gamma variables with drought application. J Korean Stat Soc 37:37–45. https://doi.org/10.1016/j.jkss.2007.09.002

    Article  Google Scholar 

  • Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Chang Biol 15:613–630

    Article  Google Scholar 

  • Barros AMG, Pereira JMC (2014) Wildfire selectivity for land cover type. Does size matter? PLoS One 9:e84760. https://doi.org/10.1371/journal.pone.0084760

    Article  Google Scholar 

  • Belzunce F, Mulero J, Ruíz JM, Suárez-Llorens A (2016) On conditional skewness with applications to environmental data. Environ Ecol Stat. https://doi.org/10.1007/s10651-016-0350-2

    Google Scholar 

  • Bistinas I, Oom D, Sá ACL et al (2013) Relationships between human population density and burned area at continental and global scales. PLoS One 8:e81188

    Article  Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000. European Environment Agency Copenhagen Technical Report No. 40, Copenhagen, Denmark

  • Bowman DMJS., Balch JK, Artaxo P et al (2009) Fire in the Earth system. Science 324:481–484

    Article  Google Scholar 

  • Bradstock RA, Hammill KA, Collins L, Price O (2010) Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc Ecol 25:607–619. https://doi.org/10.1007/s10980-009-9443-8

    Article  Google Scholar 

  • Breusch TS, Pagan AR (1979) A simple test for heteroscedasticity and random coefficient variation. Econom J Econom Soc 1287–1294

  • Büttner G, Kosztra B (2007) CLC2006 technical guidelines. European Environment Agency, Technical Report

  • Buuren S van, Fredriks M (2001) Worm plot: a simple diagnostic device for modelling growth reference curves. Stat Med 20:1259–1277

    Article  Google Scholar 

  • Caetano M, Nunes V, Pereira M (2009) Land use and land cover map of continental Portugal for 2007 (COS2007): project presentation and technical specifications development. 3rd Workshop of the EARSeL Special Interest Group on Land Use/Land Cover. vol 1

  • Catry FX, Rego FC, Bação FL, Moreira F (2009) Modeling and mapping wildfire ignition risk in Portugal. Int J Wildl Fire 18:921

    Article  Google Scholar 

  • Chuvieco E, Aguado I, Yebra M et al (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Modell 221:46–58. https://doi.org/10.1016/j.ecolmodel.2008.11.017

    Article  Google Scholar 

  • Cox C, Chu H, Schneider MF, Muñoz A (2007) Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 26:4352–4374. https://doi.org/10.1002/sim.2836

    Article  Google Scholar 

  • De Pascoa MAR, Ortega EMM, Cordeiro GM (2011) The Kumaraswamy generalized gamma distribution with application in survival analysis. Stat Methodol 8:411–433. https://doi.org/10.1016/j.stamet.2011.04.001

    Article  Google Scholar 

  • Eilers PHC, Marx BD (1996) Flexible smoothing with B -splines and penalties. Stat Sci 11 (2):89–121

    Article  Google Scholar 

  • Fernandes PM, Loureiro C, Magalhaes M et al (2012) Fuel age, weather and burn probability in Portugal. Int J Wildl Fire 21:380–384

    Article  Google Scholar 

  • Fernandes PM, Loureiro C, Guiomar N et al (2014) The dynamics and drivers of fuel and fire in the Portuguese public forest. J Environ Manage 146:373–382

    Article  Google Scholar 

  • Finney MA, McHugh CW, Grenfell IC et al (2011) A simulation of probabilistic wildfire risk components for the continental United States. Stoch Environ Res Risk Assess 25:973–1000. https://doi.org/10.1007/s00477-011-0462-z

    Article  Google Scholar 

  • Gallego FJ (2010) A population density grid of the European Union. Popul Environ 31:460–473. https://doi.org/10.1007/s11111-010-0108-y

    Article  Google Scholar 

  • Garcia Galiano SG, Giraldo Osorio JD, Urrea Mallebrera MA et al (2011) Assessing drought hazard under non-stationary conditions on southeast of Spain. IAHS-AISH, Melbourne, Australia, pp 85–91

  • Guo F, Wang G, Innes JL et al (2015) Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China. J For Res 26:545–555

    Article  Google Scholar 

  • Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monogr Stat Appl Probab 1:352

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J et al (2009) The elements of statistical learning. Springer, Berlin

    Book  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hudson IL (2010) Interdisciplinary approaches: towards new statistical methods for phenological studies. Clim Change 100:143–171. https://doi.org/10.1007/s10584-010-9859-9

    Article  Google Scholar 

  • ICNF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. http://www.icnf.pt/portal/florestas/ifn/ifn6. Accessed 9th Nov 2017

  • Katsanevakis S, Issaris Y, Poursanidis D, Thessalou-Legaki M (2010) Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area. Mar Environ Res 70:210–218

    Article  Google Scholar 

  • Koutsias N, Martínez-Fernández J, Allgöwer B (2010) Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GIScience Remote Sens 47:221–240

    Article  Google Scholar 

  • Koutsias N, Arianoutsou M, Kallimanis AS et al (2012) Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric For Meteorol 156:41–53

    Article  Google Scholar 

  • Koutsias N, Xanthopoulos G, Founda D et al (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildl Fire 22:493–507

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA (2011) Constraints on global fire activity vary across a resource gradient. Ecology 92:121–132. https://doi.org/10.1890/09-1843.1

    Article  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K, Chave J (2009) Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE 4 (4):e5102

    Article  Google Scholar 

  • Littell JS, Mckenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl 19:1003–1021. https://doi.org/10.1890/07-1183.1

    Article  Google Scholar 

  • Loepfe L, Martinez-Vilalta J, Oliveres J et al (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manage 259:2366–2374

    Article  Google Scholar 

  • Marlier ME, DeFries RS, Voulgarakis A et al (2012) El Niño and health risks from landscape fire emissions in southeast Asia. Nat Clim Chang 3:131–136. https://doi.org/10.1038/nclimate1658

    Article  Google Scholar 

  • Martin TG, Wintle BA, Rhodes JR et al (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1235–1246

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. CRC, Boca Raton

    Book  Google Scholar 

  • Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567

    Article  Google Scholar 

  • Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildl Fire 18:563–574

    Article  Google Scholar 

  • Moreira F, Viedma O, Arianoutsou M et al (2011) Landscape–wildfire interactions in southern Europe: implications for landscape management. J Environ Manage 92:2389–2402

    Article  Google Scholar 

  • Nadarajah S, Gupta AK (2007) A generalized gamma distribution with application to drought data. Math Comput Simul 74:1–7. https://doi.org/10.1016/j.matcom.2006.04.004

    Article  Google Scholar 

  • Nunes AN (2012) Regional variability and driving forces behind forest fires in Portugal an overview of the last three decades (1980–2009). Appl Geogr 34:576–586

    Article  Google Scholar 

  • Nunes MCS, Vasconcelos MJ, Pereira JMC et al (2005) Land cover type and fire in Portugal: do fires burn land cover selectively? Landsc Ecol 20:661–673

    Article  Google Scholar 

  • Nunes AN, Lourenço L, Meira ACC (2016) Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2016.03.121

    Google Scholar 

  • Oliveira SLJ, Pereira JMC, Carreiras JMB (2012a) Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int J Wildl Fire 21:48–60. https://doi.org/10.1071/WF10131

    Article  Google Scholar 

  • Oliveira S, Oehler F, San-Miguel-Ayanz J et al (2012b) Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manage 275:117–129

    Article  Google Scholar 

  • Oliveira S, Pereira JMC, San-Miguel-Ayanz J, Lourenço L (2014) Exploring the spatial patterns of fire density in Southern Europe using geographically weighted regression. Appl Geogr 51:143–157

    Article  Google Scholar 

  • Osorio JDG, Galiano SGG (2012) Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs). J Hydrol 450:82–92

    Article  Google Scholar 

  • Parente J, Pereira MG, Tonini M (2016) Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate. Sci Total Environ 559:151–165. https://doi.org/10.1016/j.scitotenv.2016.03.129

    Article  Google Scholar 

  • Pausas JG (2004a) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337–350

    Article  Google Scholar 

  • Pausas JG (2004b) Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin). Clim Change 63:337–350. https://doi.org/10.1023/B:CLIM.0000018508.94901.9c

    Article  Google Scholar 

  • Pausas JG, Ribeiro E (2013) The global fire–productivity relationship. Glob Ecol Biogeogr 22:728–736

    Article  Google Scholar 

  • Pechony O, Shindell DT (2009) Fire parameterization on a global scale. J Geophys Res 114:1–10

    Article  Google Scholar 

  • Pereira PS, Turkman KF (2011) Spatial point processes applied to the study of forest fires in Portugal. In: Spatial2 Conference: Spatial Data Methods for Environmental and Ecological Processes–2nd Edition. Foggia, Baia delle Zagare, Italy

    Google Scholar 

  • Pereira MG, Malamud BD, Trigo RM, Alves PI (2011) The history and characteristics of the 1980–2005 Portuguese rural fire database. Nat Hazards Earth Syst Sci 11:3343–3358

    Article  Google Scholar 

  • Pereira MG, Calado TJ, DaCamara CC, Calheiros T (2013) Effects of regional climate change on rural fires in Portugal. Clim Res 57:187–200

    Article  Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc Ser C (Applied Stat) 54:507–554

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2009) A flexible regression approach using GAMLSS in R. London Metropolitan University, London

    Google Scholar 

  • Rigby B, Stasinopoulos M, Heller G, Voudouris V (2014) The distribution toolbox of GAMLSS

  • Rodrigues M, de la Riva J, Fotheringham S (2014) Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl Geogr 48:52–63

    Article  Google Scholar 

  • Sá ACL, Pereira JMC, Vanconcelos MJP et al (2003) Assessing the feasibility of sub-pixel burned area mapping in miombo woodlands of northern Mozambique using MODIS imagery. Int J Remote Sens 24:1783–1796

    Article  Google Scholar 

  • Sá ACL, Pereira JMC, Charlton ME et al (2011) The pyrogeography of sub-Saharan Africa: a study of the spatial non-stationarity of fire-environment relationships using GWR. J Geogr Syst 13:227–248

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Serra L, Saez M, Juan P et al (2014) A spatio-temporal Poisson hurdle point process to model wildfires. Stoch Environ Res Risk Assess 28:1671–1684. https://doi.org/10.1007/s00477-013-0823-x

    Article  Google Scholar 

  • Stasinopoulos DM, Rigby RA (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46

    Article  Google Scholar 

  • Tedim F, Remelgado R, Borges C et al (2013) Exploring the occurrence of mega-fires in Portugal. For Ecol Manage 294:86–96

    Article  Google Scholar 

  • Thompson JR, Spies TA (2009) Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For Ecol Manage 258:1684–1694. https://doi.org/10.1016/j.foreco.2009.07.031

    Article  Google Scholar 

  • Tong ENC, Mues C, Thomas L (2013) A zero-adjusted gamma model for mortgage loan loss given default. Int J Forecast 29:548–562

    Article  Google Scholar 

  • Tong ENC, Mues C, Brown I, Thomas LC (2016) Exposure at default models with and without the credit conversion factor. Eur J Oper Res 252:910–920. https://doi.org/10.1016/j.ejor.2016.01.054

    Article  Google Scholar 

  • Torres-Manso F, Fernandes P, Pinto R et al (2014) Regional livestock grazing, human demography and fire incidence in the Portuguese landscape. For Syst 23:15

    Google Scholar 

  • Tu W, Tu W (2006) Zero-inflated data. In: encyclopedia of environmetrics. Wiley, Chichester

    Google Scholar 

  • Turco M, Bedia J, Di Liberto F et al (2016) Decreasing fires in Mediterranean Europe. PLoS One 11:e0150663. https://doi.org/10.1371/journal.pone.0150663

    Article  Google Scholar 

  • Van Ogtrop FF, Vervoort RW, Heller GZ et al (2011) Long-range forecasting of intermittent streamflow. Hydrol Earth Syst Sci 15:3343–3354

    Article  Google Scholar 

  • Villarini G, Smith JA, Serinaldi F et al (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266

    Article  Google Scholar 

  • Villarini G, Smith JA, Napolitano F (2010) Nonstationary modeling of a long record of rainfall and temperature over Rome. Adv Water Resour 33:1256–1267

    Article  Google Scholar 

  • WCS WCS-, University C for IESIN-C-C (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (IGHP)

  • Wilks DS (1990) Maximum likelihood estimation for the gamma distribution using data containing zeros. J Clim 3:1495–1501

    Article  Google Scholar 

  • Xystrakis F, Kallimanis AS, Dimopoulos P et al (2014) Precipitation dominates fire occurrence in Greece (1900–2010): its dual role in fuel build-up and dryness. Nat Hazards Earth Syst Sci 14:21–32

    Article  Google Scholar 

Download references

Acknowledgements

Ana Sá has a post-doctoral fellowship (FSRH/BPD/71810/2010) funded by the Portuguese Foundation for the Science and Technology (FCT). This study was developed in the Forest Research Centre, a Portuguese research unit also funded by the FCT (UID/AGR/00239/2013). We acknowledge Mikis Stasinopoulos for helping on the interpretation of some of the GAMLSS functions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. L. Sá.

Appendices

Appendix 1: Statistical models

According to the proposed modeling approach, first a ZAGA distribution model was fitted to fire data. The probability function of the ZAGA \(\left( {\mu ,\sigma ,\nu } \right)\) mixture model is defined by Rigby and Stasinopoulos (2005):

$$f\left( {y~|~\mu ,\sigma ,\nu } \right) = \left\{ {\begin{array}{*{20}c} {\nu ,} & {y = 0} \\ {\left( {1 - \nu } \right)\left[ {\frac{1}{{\left( {\sigma ^{2} \mu } \right)^{{1/\sigma ^{2} }} }}\frac{{y^{{\frac{1}{{\sigma ^{2} }} - 1}} e^{{ - y/\left( {\sigma ^{2} \mu } \right)}} }}{{\Gamma \left( {1/\sigma ^{2} } \right)}}} \right],} & {y> 0} \\ \end{array} } \right.$$
(2)
$$\begin{gathered} {\text{for}}\;0 \leq y\left\langle {\infty ,~\mu } \right\rangle 0,~~\sigma>0~{\text{and~}}0<\nu <1, \hfill \\ {\text{with}}\;E\left( y \right)=\left( {1 - \nu } \right)\mu ~{\text{and}}~Var\left( y \right)=\left( {1 - \nu } \right){\mu ^2}\left( {\nu +{\sigma ^2}} \right). \hfill \\ \end{gathered}$$
(3)

The ZAGA model has three components: the location \(\left( \mu \right)\), which is equal to the mean in the GA distribution, the dispersion \(\left( \sigma \right)\) of FI, and the probability of fire absence (the zeros), given by the shape parameter \(\left( \nu \right)\) of the GA distribution. All distribution parameters are explicitly modeled as a function of the explanatory variables (each distribution parameter can have a different selection of predictors) using the following link functions:

$${\text{log}}\left( \mu \right) = \eta _{1} = x_{1}^{{\prime}} \beta _{1} + \mathop \sum \limits_{{j = 1}}^{h} h_{{j1}} \left( {x_{{j1}} } \right)$$
(4)
$${\text{log}}\left( \sigma \right) = \eta _{2} = x_{2}^{{\prime}} \beta _{2} + \mathop \sum \limits_{{j = 1}}^{h} h_{{j2}} \left( {x_{{j2}} } \right)$$
(5)
$${\text{logit}}\left( \nu \right)=\log \left( {\frac{\nu }{{1 - \nu }}} \right)={\eta _3}=x_{3}^{\prime}{\beta _3}+\mathop \sum \limits_{{j=1}}^{h} {h_{j3}}\left( {{x_{j3}}} \right)$$
(6)

where \(x_{k}^{\prime}{\beta _k}\) and \({h_{jk}}\left( {{x_{j3}}} \right)\) are the parametric and non-parametric terms, correspondingly. These last smoothing functions were modeled with penalized B-splines (Eilers and Marx 1996) and they automatically optimize the degree of smoothing based on penalized maximum likelihood estimation.

With the main goal of modeling the shape of the distribution and the right-skewness of FI, a GG distribution model was fitted to data. The probability function of the flexible GG \(\left( {\mu ,\sigma ,\nu } \right)\) distribution is:

$$f\left( {y{\text{~}}|{\text{~}}\mu ,\sigma ,\nu } \right)=\frac{{{\theta ^\theta }{z^\theta }|\nu |{e^{\left( { - \theta z} \right)}}}}{{\left( {\Gamma \left( \theta \right)y} \right)}}$$
(7)
$${\text{where}}\;z={\left( {y/\mu } \right)^\nu },~\theta =1/\left( {{\sigma ^2}{{\left| \nu \right|}^2}} \right)~{\text{for~}}y>0,~\mu>0,~\sigma>0{\text{~and~}} - \infty <\nu <+\infty ,\;{\text{with}}$$
$$E\left( y \right)=\mu \frac{{\Gamma \left( {\theta +\frac{1}{\nu }} \right)}}{{\left[ {{\theta ^{\frac{1}{\nu }}}\Gamma \left( \theta \right)} \right]}},{\text{~~}}Var\left( y \right)=\frac{{\left( {{\mu ^2}} \right)\left\{ {\Gamma \left( \theta \right)\Gamma \left( {\theta +\frac{2}{\nu }} \right) - {{\left[ {\Gamma \left( {\theta +\frac{1}{\nu }} \right)} \right]}^2}} \right\}}}{{\left\{ {{\theta ^{\frac{2}{\nu }}}{{\left[ {\Gamma \left( \theta \right)} \right]}^2}} \right\}}}$$
(8)

and

$${\text{Skew}}\left( {\text{y}} \right)={\text{E}}\left[ {{{\left( {{\text{y}} - {\text{E}}\left( {\text{y}} \right)} \right)}^3}} \right]/\sqrt {{{\left( {{\text{E}}\left[ {{{\left( {{\text{y}} - {\text{E}}\left( {\text{y}} \right)} \right)}^2}} \right]} \right)}^3}} .$$
(9)

The Gamma distribution is obtained when the shape parameter\(~\nu ~=1\). For \(\nu <0~\) the distribution is asymmetric negative and for \(\nu>0\) the distribution is asymmetric positive. The lognormal distribution appears as a limiting distribution of the GG when \(\nu =0.\) Thus, the GG family includes other commonly used distributions such as the Exponential, Weibull, Rayleigh, among others (Cox et al. 2007).

Appendix 2: Figures and tables

See Figs. 9, 10, 11, 12, 13 and Table 5.

Fig. 9
figure 9

Box-and-whisker plots of the bioclimatic variables (Table 1) for classes of Fire Incidence (FI) defined according to its frequency histogram (Fig. 1): (a) mean temperature of the driest quarter (TDq); (b) mean temperature if the warmest quarter (TWaq); (c) annual precipitation (AP); (d) precipitation of the driest month (PDm); (e) precipitation of the wettest quarter (PWq); (f) precipitation of the driest quarter (PDq); (g) precipitation of the warmest quarter (PWaq); (h) precipitation of the coldest quarter (PCq)

Fig. 10
figure 10

Box-and-whisker plots of the vegetation variables (Table 1) for classes of Fire Incidence (FI) defined according to its frequency histogram (Fig. 1): (a) forest class from Cos2007 (cosFor); (b) shrubland class from Cos2007 (cosShr); (c) cropland class from Cos2007 (cosCrop); (d) forest class from CLC2006 (corFor06); (e) shrubland class from CLC2006 (corShr06); (f) cropland class from CLC2006 (corCrop06); (g) mean forest class area from CLC 1990/2000/2006 (For); (h) mean shrubland class area from CLC 1990/2000/2006 (Shr); and (i) mean shrubland class area from CLC 1990/2000/2006 (Crop)

Fig. 11
figure 11

Box-and-whisker plots of the human variables (Table 1) for classes of Fire Incidence (FI) defined according to its frequency histogram (Fig. 1): (a) logarithm of population density (logPD); and (b) human influence (HI)

Fig. 12
figure 12

Mapped weather variables for mainland Portugal: mean temperature of the driest quarter (TDq) (a); mean temperature of the warmest quarter (TWaq) (b); annual precipitation (AP) (c); precipitation of the driest month (PDm) (d); precipitation of the wettest quarter (PWq) (e); precipitation of the driest quarter (PDq) (f); precipitation of the warmest quarter (PWaq) (g); and precipitation of the coldest quarter (PCq) (h). NUTS II level administrative limits are overlaid

Fig. 13
figure 13

Scatterplot between forest area (For) and estimated shape (nu) parameter of FI from the GG model. Red line represents a linear regression model and R2 the model coefficient of determination

Table 5 Univariate and multivariate linear regression models fitted to fire data set to select environmental predictors based on their goodness-of-fit (SBC)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sá, A.C.L., Turkman, M.A.A. & Pereira, J.M.C. Exploring fire incidence in Portugal using generalized additive models for location, scale and shape (GAMLSS). Model. Earth Syst. Environ. 4, 199–220 (2018). https://doi.org/10.1007/s40808-017-0409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-017-0409-6

Keywords

Navigation