Skip to main content
Log in

Investigation of Dimple-Texturing on the Tribological Performance of Tungsten Carbide-AISI H13 Steel

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

Dimple texturing is the emerging practice to minimize friction and wear in frictional contact pairs. The tribological properties of the frictional contact pairs can be enhanced by optimizing the dimple-texture shape, dimple pitch and area density ratio. In this investigation, the frictional properties of dimple-textured tungsten carbide discs with hardened AISI H-13 steel pins was investigated using a pin on disc wear tester. Laser marking technology was employed to fabricate the polar arrays of honeycomb texture (HT) and spherical dimple-textures (ST) with 25% and 35% area density ratios. The sliding wear test was conducted for the dry and MoS2 (molybdenum disulphide) solid lubricant conditions to investigate the effect of coefficient of friction and wear rate of dimple structures with variation in disc rotational speeds in the range of 1000 rpm, 1250 rpm and 1500 rpm. The results indicate that, ST surface with MoS2 coating with 35% of area density at 1500 rpm exhibited best results in comparison to nontextured (NT) and HT with and without aid of MoS2 coating. The friction coefficient and wear rate for ST surface with MoS2 coating were 13.5% and 24% lower in comparison with HT at operating conditions of 35% of area density at 1500 rpm, respectively. Similarly, in comparison with NT the ST surface with an operating condition of 35% of area density at 1500 rpm exhibited 39.1% and 48.2% reduction in friction coefficient and wear rate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

COF:

Coefficient of friction

DOF:

Degrees of freedom

f:

Dimple pitch size

HT:

Honeycomb texture

HT25:

Honeycomb textured without MoS2 (q = 25%)

HT35:

Honeycomb textured without MoS2 (q = 35%)

HTL25:

Honeycomb textured with MoS2 (q = 25%)

HTL35:

Honeycomb textured with MoS2 (q = 35%)

MoS2 :

Molybdenum disulphide

NT:

Nontextured

NTL:

Nontextured with MoS2 lubrication

q:

Dimple area density

S:

Diameter of the test specimen

s:

Diameter of the circle of dimples

ST:

Spherical dimple-Texture

ST25:

Spherical dimple-Textured without MoS2 (q = 25%)

ST35:

Spherical dimple-Textured without MoS2 (q = 35%)

STL25:

Spherical dimple-Textured with MoS2 (q = 25%)

STL35:

Spherical dimple-Textured with MoS2 (q = 35%)

References

  1. Wu J, Yu A, Chen Q, Wu M, Sun L, Yuan J (2020) Tribological properties of bronze surface with dimple textures fabricated by the indentation method. Proc Inst Mech Eng Part J J Eng Tribol 234(10):1680–1694. https://doi.org/10.1177/1350650120940126

    Article  Google Scholar 

  2. Ibatan T, Uddin MS, Chowdhury MAK (2015) Recent development on surface texturing in enhancing tribological performance of bearing sliders. Surf Coat Technol 272:102–120. https://doi.org/10.1016/j.surfcoat.2015.04.017

    Article  CAS  Google Scholar 

  3. Joshua SP, Babu PD (2020) Effect of laser textured surface with different patterns on tribological characteristics of bearing material AISI 52100. J Cent South Univ 27(8):2210–2219. https://doi.org/10.1007/s11771-020-4442-7

    Article  CAS  Google Scholar 

  4. Kumar M, Ranjan V, Tyagi R (2020) Effect of shape, density, and an Array of dimples on the friction and Wear performance of laser textured bearing steel under dry sliding. J Mater Eng Perform 29:2827–2838. https://doi.org/10.1007/s11665-020-04816-8

    Article  CAS  Google Scholar 

  5. Park GC, Ali S, Kurniawan R, Ko TJ (2021) Effect of burrs on the friction performance of hierarchical micro-dimple textured AISI 1045 steel. J Mech Sci Technol 35(12):5631–5642. https://doi.org/10.1007/s12206-021-1134-7

    Article  Google Scholar 

  6. Yu A, Niu W, Hong X, He Y, Wu M, Chen Q, Ding M (2018) Influence of tribo-magnetization on wear debris trapping processes of textured dimples. Tribol Int 121:84–93. https://doi.org/10.1016/j.triboint.2018.01.046

    Article  Google Scholar 

  7. Wu Z, Bao H, Xing Y, Liu L (2021) Tribological characteristics and advanced processing methods of textured surfaces: a review. Int J Adv Manuf Technol 114:1241–1277. https://doi.org/10.1007/s00170-021-06954-2

    Article  Google Scholar 

  8. Xu Y, Zheng Q, Abuflaha R, Olson D, Furlong O, You T, Zhang Q, Hu X, Tysoe WT (2019) Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol Int 136:267–275. https://doi.org/10.1016/j.triboint.2019.03.047

    Article  CAS  Google Scholar 

  9. Boidi G, Tertuliano IS, Profito FJ, de Rossi W, Machado IF (2020) Effect of laser surface texturing on friction behaviour in elastohydrodynamically lubricated point contacts under different sliding-rolling conditions. Tribol Int 149:1–9. https://doi.org/10.1016/j.triboint.2019.02.021

    Article  Google Scholar 

  10. Liptakova T, Fajnor P, Halamova M (2014) Mechanical surface treatments effects on corrosion of AISI 316 Ti stainless steel in chloride environments. J Eng Res 3(2):1–17

    Google Scholar 

  11. Zhang J, Zhang J, Rosenkranz A, Suzuki N, Shamoto E (2019) Frictional properties of surface textures fabricated on hardened steel by elliptical vibration diamond cutting. Precis Eng 59:66–72. https://doi.org/10.1016/j.precisioneng.2019.06.001

    Article  CAS  Google Scholar 

  12. Meng R, Deng J, Duan R, Liu Y, Zhang G (2019) Modifying tribological performances of AISI 316 stainless steel surfaces by laser surface texturing and various solid lubricants. Opt Laser Technol 109:401–411. https://doi.org/10.1016/j.optlastec.2018.08.020

    Article  CAS  Google Scholar 

  13. Ortega-Ramos IA, Alvarez-Vera M, Acevedo-Dávila JL, Hdz-García HM, Muñoz-Arroyo R (2019) Effect of the surface texturing treatment with Nd: YAG laser on the wear resistance of CoCr alloy. MRS Adv 4(55–56):3031–3039. https://doi.org/10.1557/adv.2019.397

    Article  CAS  Google Scholar 

  14. Fiaschi G, Di Lauro M, Ballestrazzi A, Rota A, Biscarini F, Valeri S (2020) Tribological response of laser-textured steel pins with low-dimensional micrometric patterns. Tribol Int 149:1–7. https://doi.org/10.1016/j.triboint.2019.01.007

    Article  CAS  Google Scholar 

  15. Zhang J, Yang D, Rosenkranz A, Zhang J, Zhao L, Song C, Yan Y, Sun T (2019) Laser surface texturing of stainless steel− effect of pulse duration on Texture's morphology and frictional response. Adv Eng Mater 21(3):1–7. https://doi.org/10.1002/adem.201801016

    Article  Google Scholar 

  16. Jeyapandiarajan P, Xavior A (2019) Influence of cutting condition on machinability aspects of Inconel 718. J Eng Res 7(2):315–332

    CAS  Google Scholar 

  17. Babu PD, Vignesh S, Vignesh M, Balamurugan C (2018) Enhancement of wear resistance of Ti—6Al—4V alloy by picosecond laser surface micro texturing process. J Cent South Univ 25(8):1836–1848. https://doi.org/10.1007/s11771-018-3873-x

    Article  CAS  Google Scholar 

  18. Chen P, Li JL, Li YL (2018) Effect of geometric micro-groove texture patterns on tribological performance of stainless steel. J Cent South Univ 25(2):331–341. https://doi.org/10.1007/s11771-018-3740-9

    Article  CAS  Google Scholar 

  19. Ezhilmaran V, Vasa NJ, Vijayaraghavan L (2018) Investigation on generation of laser assisted dimples on piston ring surface and influence of dimple parameters on friction. Surf Coat Technol 335:314–326. https://doi.org/10.1016/j.surfcoat.2017.12.052

    Article  CAS  Google Scholar 

  20. Vignesh G, Prakash M, Selvam MD, Ragupathi P (2018) Frictional performance of dimpled textured surfaces on a frictional pair: an experimental study. I-Manager's journal on. Mech Eng 8(4):8–14

    Google Scholar 

  21. Kummel D, Hamann-Schroer M, Hetzner H, Schneider J (2019) Tribological behavior of nanosecond-laser surface textured Ti6Al4V. Wear. 422:261–268. https://doi.org/10.1016/j.wear.2019.01.079

    Article  CAS  Google Scholar 

  22. Nikam MD, Shimpi D, Bhole K, Mastud SA (2019) Design and development of surface texture for Tribological application. In Key Eng Mater 803:55–59. https://doi.org/10.4028/www.scientific.net/KEM.803.55

    Article  Google Scholar 

  23. Vignesh G, Barik D, Ragupathi P, Aravind S (2020) Experimental analysis on turning of AISI 4340 steel using, dimple textured and MoS2 coated dimple textured carbide cutting inserts at the rack surface. Mater Today Proc 33(7):2616–2620. https://doi.org/10.1016/j.matpr.2020.01.125

    Article  CAS  Google Scholar 

  24. Kataria R, Kumar J (2014) A comparison of the different multiple response optimization techniques for turning operation of AISI O1 tool steel. J Eng Res 4(2):1–24

    Google Scholar 

  25. Yuan S, Lin N, Zou J, Liu Z, Wang Z, Tian L, Qin L, Zhang H, Wang Z, Tang B, Wu Y (2019) Effect of laser surface texturing (LST) on tribological behavior of double glow plasma surface zirconizing coating on Ti6Al4V alloy. Surf Coat Technol 368:97–109. https://doi.org/10.1016/j.surfcoat.2019.04.038

    Article  CAS  Google Scholar 

  26. Stark T, Alamri S, Aguilar-Morales AI, Kiedrowski T, Lasagni AF (2019) Positive effect of laser structured surfaces on tribological performance. J Laser Micro Nanoeng 14(1):13–18. https://doi.org/10.2961/jlmn.2019.01.0003

    Article  CAS  Google Scholar 

  27. Rosenkranz A, Costa HL, Baykara MZ, Martini A (2021) Synergetic effects of surface texturing and solid lubricants to tailor friction and wear–a review. Tribol Int 155:1067–1092. https://doi.org/10.1016/j.triboint.2020.106792

    Article  CAS  Google Scholar 

  28. Boidi G, Grützmacher PG, Kadiric A, Profito FJ, Machado IF, Gachot C, Dini D (2021) Fast laser surface texturing of spherical samples to improve the frictional performance of elasto-hydrodynamic lubricated contacts. Friction. 9(5):1227–1241. https://doi.org/10.1007/s40544-020-0462-4

    Article  Google Scholar 

  29. Vignesh G, Barik D, Aravind S, Ragupathi P, Arun M (2021) Numerical investigation of dimple-texturing on the turning performance of hardened AISI H-13 steel. Int J Simul Multidiscip Des Optim:1–13. https://doi.org/10.1051/smdo/2021043

  30. Xie X, Hua X, Li J, Cao X, Tian Z, Peng R, Yin B, Zhang P (2021) Synergistic effect of micro-textures and MoS2 on the tribological properties of PTFE film against GCr15 bearing steel. J Mech Sci Technol 35(5):2151–2160. https://doi.org/10.1007/s12206-021-0431-5

    Article  Google Scholar 

  31. Lansdown AR (2013) Lubrication: a practical guide to lubricant selection. Elsevier

    Google Scholar 

  32. Wang X, Wang J, Zhang B, Huang W (2015) Design principles for the area density of dimple patterns. Proc Inst Mech Eng Part J J Eng Tribol 229(4):538–546. https://doi.org/10.1177/1350650114531939

    Article  Google Scholar 

  33. Rosenkranz A, Grützmacher PG, Gachot C, Costa HL (2019) Surface texturing in machine elements− a critical discussion for rolling and sliding contacts. Adv Eng Mater 21(8):190–194. https://doi.org/10.1002/adem.201900194

    Article  Google Scholar 

  34. Wu J, Ma B, Li H, Stanciulescu I (2019) The running-in micro-mechanism and efficient work conditions of cu-based friction material against 65Mn steel. Exp Tech 43(6):667–676. https://doi.org/10.1007/s40799-019-00323-1

    Article  Google Scholar 

  35. Tabrizi AT, Aghajani H, Laleh FF (2021) Tribological study of thin-electroplated chromium: evaluation of Wear rate as a function of surface roughness. Exp Tech 23:1–11. https://doi.org/10.1007/s40799-021-00502-z

    Article  Google Scholar 

  36. Rouillard V, Lamb MJ, Sek MA (2018) Modelling the dynamic behaviour of a friction-type mechanical shock Indicator. Exp Tech 42(4):383–391. https://doi.org/10.1007/s40799-018-0242-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Karpagam Academy of Higher Education, Coimbatore, India for providing necessary facilities to carryout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Barik.

Ethics declarations

Conflict of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G., V., Barik, D. Investigation of Dimple-Texturing on the Tribological Performance of Tungsten Carbide-AISI H13 Steel. Exp Tech 47, 565–577 (2023). https://doi.org/10.1007/s40799-022-00570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-022-00570-9

Keywords

Navigation