Skip to main content
Log in

Optimization of the Trailing Edge Inclination of Wet Steam Turbine Stator Blade Towards the Losses Reduction

  • S.I.: Computations & Experiments on Dynamics of Complex Fluid & Structure
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

Thermodynamic losses and blade erosion occur due to formation of wetness in the low-pressure steam turbine. By changing the trailing edge angle of turbine blade can reduce blade erosion and condensation losses. This research optimized the best of the trailing edge rotation to improve the turbine's operation at the low-pressure part of the steam turbines (thermodynamic losses and blade erosion) as passive method. In this paper, the integral of the number of droplets per volume (IND), the integral of the droplet average radius (IDR), the integral of wetness fraction (IWF), the integral of local entropy (ILE), and the integral of dynamic pressure (IDP) were considered as goals of optimization. The results introduce an optimal case (θ =  − 0.84o counterclockwise) while improved IDR by 0.276%, increased IND by 0.0389%, improved IWF by 0.207%, reduced IDP by 0.054%, and increased ILE by 0.0074%. In addition, this optimization caused the erosion rate to be improved by 2.33% and the condensation losses to be decreased by 0.39%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A:

Area (m2)

IWF:

Integral of wetness fraction (-)

ILE:

Integral of local entropy (\(\frac{J}{kg K}\))

IDP:

Integral of dynamic pressure (\(\frac{kg}{m {s}^{2}}\))

IDR:

Integral of droplet average radius fraction (\(\mu m\))

IND:

Integral of number of droplets per volume (\({m}^{-2}\))

L:

Total length of blade geometry (m)

Ma:

Mach number (-)

P:

Pressure (Pa)

r:

Droplet radius (μm)

\(\overline{r }\) :

Droplet average radius (m)

T:

Temperature (K)

u:

Velocity (m/s)

X:

Length parameter of blade geometry (m

α:

Angle of second position (o)

β:

Angle of first position (o)

Γ:

Liquid mass fraction (kg/m3 s)

η:

Number of droplets per volume (1/m2)

θ:

Trailing edge rotation of blade (o

References

  1. Li Y, Wu H, Tang Y, Fu W, Liu Z (2018) Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int J Thermal Sci 132:509–516. https://doi.org/10.1016/j.ijthermalsci.2018.06.033

    Article  Google Scholar 

  2. Dolatabadi AM, Lakzian E, Heydari M, Khan A (2022) A modified model of the suction technique of wetness reducing in wet steam flow considering power-saving. Energy 238:121685. https://doi.org/10.1016/j.energy.2021.121685

    Article  Google Scholar 

  3. Keisari SJ, Shams M (2016) Shape optimization of nucleating wet-steam flow nozzle. Appl Therm Eng 103:812–820. https://doi.org/10.1016/j.applthermaleng.2016.04.134

    Article  Google Scholar 

  4. Mirhoseini MS, Boroomand M (2017) Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles. Energy 141:1027–1037. https://doi.org/10.1016/j.energy.2017.09.138

    Article  Google Scholar 

  5. Dykas S, Majkut M, Smolka K, Strozik M (2018) Analysis of the steam condensing flow in a linear blade cascade. Proc Inst Mech Eng Part A J Power Energy 232(5):501–514. https://doi.org/10.1177/0957650917743365

    Article  Google Scholar 

  6. Bakhtar F, Zidi K (1989) Nucleation phenomena in flowing high-pressure steam: Experimental results. Proc Inst Mech Eng Part A J Power Eng 203(3):195–200. https://doi.org/10.1243/PIME_PROC_1989_203_027_02

    Article  Google Scholar 

  7. Wang X, Su P, Chou L, Guan P, Li C, Zhou H (2009) Water droplets dispersion and optimization of water removal suction slot locations on stationary blades in last-stage of a 600 mw steam turbine, in: ASME Turbo Expo 2009: Power for Land, Sea, and Air, Vol. 7, American Society of Mechanical Engineers Digital Collection, pp. 1439–1446. https://doi.org/10.1115/GT2009-59490

  8. Liu Y, Du X, Shi X, Huang D Condensation flow at the wet steam centrifugal turbine stage. Proc Inst Mech Eng Part A J Power Energy. https://doi.org/10.1177/0957650919894823.

  9. Beheshti KM, Amiri H (2015) The effect of inlet stagnation supercooling degree on the aerodynamics of the steam flow field around a rotor tip section. Heat Mass Transfer 51:117–128. https://doi.org/10.1007/s00231-014-1402-5

    Article  CAS  Google Scholar 

  10. Su J, Li Q, Hu P, Cao L, Li Y (2020) Distribution characteristics of salt-out particles in steam turbine stage. Energy 192:116626. https://doi.org/10.1016/j.energy.2019.116626

    Article  Google Scholar 

  11. Bhattacharya, Chittatosh, Sengupta, Bidesh Investigation of energy loss on fractional deposition in last stages of condensing steam turbine due to blade shape and moisture droplet size. J Eng Gas Turbines Power 140 (7). https://doi.org/10.1115/1.4038544

  12. Lakzian E, Wen C, Wang C, Ding H, Li Y (2019) Entropy generation and exergy destruction in condensing steam flow through turbine blade with surface roughness. Energy Convers Manag 196:1089–1104. https://doi.org/10.1016/j.enconman.2019.06.066

    Article  Google Scholar 

  13. Zhang G, Zhang X, Wang F, Wang D, Jin Z, Zhou Z (2019) Numerical investigation of novel dehumidification strategies in nuclear plant steam turbine based on the modified nucleation model. Int J Multiph Flow 120:103083. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103083

    Article  CAS  Google Scholar 

  14. Alekseev R, Gribin V, Tishchenko A, Gavrilov IY, Tishchenko V, Popov V (2019) Investigation of the influence of intra-channel liquid film suction on the structure of the droplet flow downstream a stator blades cascade of a steam turbine. J Phy Conf Ser 1359:012024

    Article  Google Scholar 

  15. Gribin V, Tishchenko A, Gavrilov IY, Popov V, Sorokin IY, Tishchenko V, Khomyakov S (2016) Experimental study of intrachannel separation in a flat nozzle turbine blade assembly with wet stream flow. Power Technol Eng 50(2):180–187. https://doi.org/10.1007/s10749-016-0680-0

    Article  Google Scholar 

  16. Amiri HB, Salmaniyeh F, Izadi A (2016) The influence of incidence angle on the aerodynamics of condensing flow around a rotor tip section of steam turbine. Heat Mass Transf 52(11):2423–2436. https://doi.org/10.1007/s00231-015-1736-7

    Article  CAS  Google Scholar 

  17. Bagheri-Esfe H, Kermani MJ, Saffar-Avval M (2016) Effects of nonequilibrium condensation on deviation angle and efficiency in a steam turbine stage. J Mech Sci Technol 30(3):1351–1361. https://doi.org/10.1007/s12206-016-0242-2

    Article  Google Scholar 

  18. Mahmoud NH, Singh UK (2000) Wetness and Losses Control Using Geometry Considerations in Low Pressure Stages of Steam Turbines. ERJ Eng Res J 23(2):119–149

    Article  Google Scholar 

  19. Havakechian S, Greim R (1999) Aerodynamic design of 50 per cent reaction steam turbines. Proc Inst Mech Eng C J Mech Eng Sci 213(1):1–25. https://doi.org/10.1243/0954406991522158

    Article  Google Scholar 

  20. Han X, Han Z, Zeng W, Li P, Qian J Numerical simulation of wet steam transonic condensation flow in the last stage of a steam turbine. Int J Num Methods Heat Fluid Flow. https://doi.org/10.1108/HFF-10-2017-0415

  21. Nowak G, Wr´oblewski W, Nowak I (2012) Convective cooling optimization of a blade for a supercritical steam turbine. Int J Heat Mass Transfer 55(17):4511–4520. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.072

    Article  CAS  Google Scholar 

  22. Vatanmakan M, Lakzian E, Mahpeykar MR (2018) Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating. Energy 147:701–714. https://doi.org/10.1016/j.energy.2018.01.097

    Article  Google Scholar 

  23. Hosseini R, Lakzian E (2019) Optimization volumetric heating in condensing steam flow by a novel method. J Thermal Anal Calorimetry: 1–13. https://doi.org/10.1007/s10973-019-09001-1

  24. Bagheri-Esfe H, Safikhani H (2017) Modeling of deviation angle and performance losses in wet steam turbines using gmdh-type neural networks. Neural Comput Appl 28(1):489–501. https://doi.org/10.1007/s00521-016-2389-2

    Article  Google Scholar 

  25. Farnam M, Khoshvaght-Aliabadi M, Asadollahzadeh MJ (2018) Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques. Chem Eng Processi Process Intensif 133:137–147

    Article  CAS  Google Scholar 

  26. Guodong Y, Zhou H, Qiu L, Wu J (2020) Geometry-Load Based Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine Blade. Energies 13(10):2471. https://doi.org/10.3390/en13102471

    Article  Google Scholar 

  27. Ebrahimi-Fizik A, Lakzian E, Hashemian A (2019) Entropy generation analysis of wet-steam flow with variation of expansion rate using nurbs-based meshing technique. Int J Heat Mass Transf 139:399–411. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.010

    Article  Google Scholar 

  28. Zhonghe H, Zeng W, Han X, Xiang P (2018) Investigating the dehumidification characteristics of turbine stator cascades with parallel channels. Energies 11(9):2306. https://doi.org/10.3390/en11092306

    Article  Google Scholar 

  29. Sieverding C, Manna M (2020) A review on turbine trailing edge flow. Int J Turbomach Propuls Power 5(2):10

    Article  Google Scholar 

  30. Wei W, Rong M, Zhang Y (2011) Multi-objective aerodynamic optimization design method of compressor rotor based on Isight. Procedia Eng 15:3699–3703. https://doi.org/10.1016/j.proeng.2011.08.693

    Article  Google Scholar 

  31. Papila N, Shyy W, Griffin L, Dorney D (2016) Shape optimization of supersonic turbines using response surface and neural network methods, in: 39th Aerospace Sciences Meeting and Exhibit, p. 1065. https://doi.org/10.2514/6.2001-1065

  32. Huppertz A, Flassig PM, Flassig RJ, Swoboda M (2007) Knowledge based 2d blade design using multi-objective aerodynamic optimization and a neural network, in: ASME Turbo Expo 2007: Power for Land, Sea, and Air, American Society of Mechanical Engineers Digital Collection, pp. 413–423. https://doi.org/10.1115/GT2007-28204

  33. Özhan Ö, Akmandor İS (2010) Multi-objective aerodynamic optimization of axial turbine blades using a novel multilevel genetic algorithm: 041009

  34. Hoseinzade D, Lakzian E, Hashemian A (2021) A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades. Energy 220:119751. https://doi.org/10.1016/j.energy.2020.119751

    Article  Google Scholar 

  35. Bakhtar F, Mahpeykar MR, Abbas KK (1995) An investigation of nucleating flows of steam in a cascade of turbine blading-theoretical treatment. J Fluids Eng 117(1):138–144. https://doi.org/10.1115/1.2816803

    Article  Google Scholar 

  36. Byeong-Eun L, Riu K, Shin S, Kwon S (2003) Development of a water droplet erosion model for large steam turbine blades. KSME Int J 17(1):114–121. https://doi.org/10.1007/BF02984292

    Article  Google Scholar 

  37. Aliabadi MAF, Lakzian E, Jahangiri A, Khazaei I (2020) Numerical investigation of effects polydispersed droplets on the erosion rate and condensation loss in the wet steam flow in the turbine blade cascade. Appl Thermal Eng 164:114478

    Article  Google Scholar 

  38. Coello CCA, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, New York

    Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Ali Hashemian (BCAM – Basque Center for Applied Mathematics, Bilbao, Basque Country, Spain) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lakzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzade, D., Lakzian, E. & Dykas, S. Optimization of the Trailing Edge Inclination of Wet Steam Turbine Stator Blade Towards the Losses Reduction. Exp Tech 47, 269–279 (2023). https://doi.org/10.1007/s40799-021-00534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-021-00534-5

Keywords

Navigation