Skip to main content
Log in

Investigation of Thrust Force, Drill Bit Temperature and Burr Height in the Drilling of Aluminum Alloy Used in Ammunition Wing Drive Systems

  • Applications paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In this present study, the effect of drilling parameters and carbide drill bits in drilling of Al 5083 H116 alloy was investigated. The drilling tests were carried out using various carbide drill bits at 40, 80, 120, 160 m/min cutting speeds and 0.025, 0.050, 0.075, 0.100 feed rates. The experimental design was performed using the Taguchi’s L16 orthogonal array. The drilling tests were carried out without using coolant and it was aimed to minimize the thrust force, drill bit temperature and burr formation at the hole exit. Simultaneous optimization was performed using Taguchi-based Grey Relational Analysis (GRA). Using the data obtained from the drilling tests, mathematical models with Response Surface Methodology (RSM) and predicted values with Artificial Neural Networks (ANN) were obtained. It was observed that there was a significant increase in thrust force and burr height with increasing feed rate. In addition, the drill bit temperature was adversely affected by the increasing values of the cutting speed. The most effective control factors according to the analysis of variance were found to be the feed rate with 99.9 % for thrust force, cutting speed with 91.54 % for drill bit temperature and feed rate with 79.78 % for burr height. As a result of GRA, the feed rate with a value of 0.3612 was determined as the most important control factor, moreover, according to RSM results, the optimum parameters were 40 m/min cutting speed, 0.025 mm/rev feed rate and drill bit 1. The reliability of the developed mathematical model was confirmed with determination coefficients of 99.1 % for the thrust force, 98.8 % for the drill bit temperature and 99.7 % for the burr height. With ANN, a prediction success rate of 99.8 % for thrust force, 99.8 % for drill bit temperature and 99.6 % for burr height was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Songmene V, Khettabi R, Zaghbani I, Kouam J, Djebara A (2011) Machining and machinability of aluminum alloys. INTECH Open Access Publisher. https://doi.org/10.5772/14888

    Book  Google Scholar 

  2. Rotella G, Dillon OW, Umbrello D, Settineri L, Jawahir IS (2013) Finite element modeling of microstructural changes in turning of AA7075-T651 alloy. J Manuf Process 15(1):87–95. https://doi.org/10.1016/j.jmapro.2012.09.005

    Article  Google Scholar 

  3. Paturi UMR, Narala SKR, Pundir R (2014) Constitutive flow stress formulation, model validation and FE cutting simulation for AA7075-T6 aluminum alloy. Mater Sci Eng: A 605:176–185. https://doi.org/10.1016/j.msea.2014.03.033

    Article  CAS  Google Scholar 

  4. Çaydaş U (2017) Investigaton of the effects of cutting parameters on the surface roughness, tool temperature and thrust force in drilling of AA 7075-T6 alloy. J Polytech 20(29):419–425. https://doi.org/10.2339/2017.20.2

    Article  Google Scholar 

  5. Kalpakjian S, Schmid S (2014) Manufacturing engineering and technology, 7th edn. Pearson Education Inc, Singapore, pp 625–665

    Google Scholar 

  6. Das R, Barik T (2014) An experimental study on the burr formation in drilling of aluminum channels of rectangular section”, 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR), pp 831–85

  7. Kurt M, Kaynak Y, Bakır B, Köklü U, Atakök G, Kutlu L (2009) Experimental investigation and Taguchi optimization for the effect of cutting parameters on the drilling of Al 2024-t4 alloy with diamond like carbon (DLC) coated drills, 5. Uluslararası İleri Teknolojiler Sempozyumu (IATS’09), Karabük, Türkiye

  8. Tonshoff HL, Spintig W, Konig W, Neises A (1994) Machining of holes developments in drilling techonolgy. Ann CIRP 43(2):551–560. https://doi.org/10.1016/S0007-8506(07)60501-0

    Article  Google Scholar 

  9. Çakır A, Bahtiyar O, Şeker U (2014) Farklı soğutma şartları ile farklı kesme parametrelerinin AA7075 ve AA2024 alüminyum alaşımlarında delik delme işlemlerine etkisinin deneysel olarak incelenmesi, 16. Uluslararası Makina Tasarım ve İmalat Kongresi, 30 Haziran – 03 Temmuz 2014, İzmir, Türkiye

  10. Gökçe H (2020) Investigation of drilling performance of copper material in terms of cutting force and tool temperature. El-Cezerî J Sci Eng 7(3):1039–1053. https://doi.org/10.31202/ecjse.730812

    Article  Google Scholar 

  11. Yağmur S, Acır A, Şeker U, Günay M (2013) An experimental investigation of effect of cutting parameters on cutting zone temperature in drilling. J Fac Eng Archit Gazi Univ 28(1):1–6

    Google Scholar 

  12. Colligan K (1994) New tool drills both titanium and carbon composites. Am Mach 138(10):56–58

    Google Scholar 

  13. Kim D, Ramulu M (2205) Cutting and drilling characteristics of hybrid titanium composite laminate (HTCL). In: Proceedings of Materials and Processing Technologies for Revolutionary Applications Fall Technical Conference, Seattle, Washington, 1–8

  14. Lambert BK (1979) Prediction of force, torque and burr length in drilling titanium-composite materials. SME Technical Paper MR 79–363

  15. Çiftçi İ, Gökçe H (2019) Optimisation of cutting tool and cutting parameters in machining of molybdenum alloys through the Taguchi Method. J Fac Eng Archit Gazi Univ 34(1):201–213. https://doi.org/10.17341/gazimmfd.416482

    Article  Google Scholar 

  16. Yavuz M, Gökçe H, Çiftçi İ, Gökçe H, Yavaş Ç, Şeker U (2020) Investigation of the effects of drill geometry on drilling performance and hole quality. Int J Adv Manuf Technol 106(9):4623–4633. https://doi.org/10.1007/s00170-019-04843-3

    Article  Google Scholar 

  17. Gökçe H, Çiftçi İ, Demir H (2018) Cutting parameter optimization in shoulder milling of commercially pure molybdenum. J Braz Soc Mech Sci Eng 40:360. https://doi.org/10.1007/s40430-018-1280-8

    Article  CAS  Google Scholar 

  18. Bayraktar Ş, Siyambaş Y, Turgut Y (2017) Delik delme prosesi: bir araştırma. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21(2):120–130. https://doi.org/10.16984/saufenbilder.296833

    Article  Google Scholar 

  19. Meral G, Dilipak H, Sarıkaya M (2011) AISI 1050 malzemenin delinmesinde delme parametrelerinin delik kalitesi üzerindeki etkisinin çoklu regresyon metoduyla modellenmesi. Makine Teknolojileri Elektronik Dergisi 8(1):37–46

    Google Scholar 

  20. Dhar NR, Ahmed NT, Islam S (2007) An experimental investigation on effect of minumum quantity lubrication in machining AISI 1040 steel. Int J Mach Tools Manuf 47:748–753. https://doi.org/10.1016/j.ijmachtools.2006.09.017

    Article  Google Scholar 

  21. Bayraktar Ş, Turgut Y (2016) AL-5083 alaşımının frezelenmesinde kesme kuvveti, yüzey pürüzlülüğü ve çapak yüksekliğinin optimizasyonu. 7th International Symposium on Machining, November 3–5, Marmara University, İstanbul

  22. Kakati AK, Chandrasekaran M, Mandal A, Singh AK (2011) Prediction of optimum cutting parameters to obtain desired surface in finish pass end milling of aluminium alloy with carbide tool using artificial neural network. World Acad Sci Eng Technol 5(9):1929–1935. https://doi.org/10.5281/zenodo.1063264

    Article  Google Scholar 

  23. Dörterler M, Şahin İ, Gökçe H (2019) A grey wolf optimizer approach for optimal weight design problem of the spur gear. Eng Optim 51(6):1013–1027. https://doi.org/10.1080/0305215X.2018.1509963

    Article  Google Scholar 

  24. Devitte C, Souza GSC, Souza AJ, Tita S, Tita V (2021) Optimization for drilling process of metal-composite aeronautical structures. De Gruyter. https://doi.org/10.1515/secm-2021-0027

  25. Yaşar N, Boy M, Günay M (2017) The effect of drilling parameters for surface roughness in drilling of AA7075 alloy. 21st Innovative Manufacturing Engineering & Energy International Conference-IManE&E 2017, 8. https://doi.org/10.1051/matecconf/201711201018

  26. Rubi CS, Prakash JU, Rajkumar C (2020) Optimization of process parameters using taguchi technique for drilling aluminium matrix composites (LM6/B4C). IOP Conference Series: Materials Science and Engineering, 912, 032016. https://doi.org/10.1088/1757-899X/912/3/032016

  27. Ghosh T, Wang Y, Martinsen K, Wang K (2020) A surrogate-assisted optimization approach for multi-response end milling of aluminum alloy AA3105. Int J Adv Manuf Technol 111:2419–2439. https://doi.org/10.1007/s00170-020-06209-6

    Article  Google Scholar 

  28. Dave S, Vora JJ, Thakkar N, Singh A, Srivastava S, Gadhvi B, Patel VV, Kumar A (2016) Optimization of EDM drilling parameters for aluminum 2024 alloy using response surface methodology and genetic algorithm. Key Eng Mater 706:3–8. https://doi.org/10.4028/www.scientific.net/KEM.706.3

    Article  Google Scholar 

  29. Golshan A, Ghodsiyeh D, Gohari S, Ayob A, Baharudin BTHT (2012) Optimization of machining parameters during drilling of 7075 aluminium alloy. Appl Mech Mater 248:20–25. https://doi.org/10.4028/www.scientific.net/AMM.248.20

    Article  CAS  Google Scholar 

  30. Haleel AJ (2018) Optimization drilling parameters of aluminum alloy based on taguchi method. Al-Khwarizmi Eng J 14(2):14–21. https://doi.org/10.22153/kej.2018.12.001

    Article  Google Scholar 

  31. Kundu S, Das S, Saha PP (2014) Optimization of drilling parameters to minimize burr by providing back-up support on aluminium alloy. Procedia Eng 97:230–240. https://doi.org/10.1016/j.proeng.2014.12.246

    Article  CAS  Google Scholar 

  32. http://www.matweb.com/search/DataSheet.aspx?MatGUID=1efe7441a72f4a22a53c0dc1bd9cc1bd9c87ec&ckck=1. Accessed: 10.01.2021

  33. Gökçe H, Yavuz M, Karayel M (2017) Dynamometer design and manufacturing for cutting force definition on machining process. Gazi J Eng Sci 3(2):27–32

    Google Scholar 

  34. Kökçam AH, Uygun Ö, Kılıçaslan E (2018) Optimum tire selection with grey relational analysis. J Intell Syst Theory Appl 1(1):31–35. https://doi.org/10.38016/jista.452996

  35. Kuo Y, Yang T, Huang GW (2008) The use of grey relational analysis in solving multiple attribute decisionmaking problems. Comput Ind Eng 55(1):80–93. https://doi.org/10.1016/j.cie.2007.12.002

    Article  Google Scholar 

  36. Peker İ, Baki B (2011) Gri ilişkisel analiz yöntemiyle türk sigortacılık sektöründe performans ölçümü. Int J Econ Admin Stud 4(7):1307–9832

    Google Scholar 

  37. Köse W, Temiz İ, Erol S (2011) Grey system approach for economic order quantity models under uncertainty. J Grey Syst 23(1):71–82

    Google Scholar 

  38. Günay M, Meral T (2020) Modelling and multiresponse optimization for minimizing burr height, thrust force and surface roughness in drilling of ferritic stainless steel. Indian Acad Sci – Sådhanå 45:275. https://doi.org/10.1007/s12046-020-01490-3

    Article  Google Scholar 

  39. Yaşar N (2019) Thrust force modelling and surface roughness optimization in drilling of AA-7075: FEM and GRA. J Mech Sci Technol 33:4771–4781. https://doi.org/10.1007/s12206-019-0918-5

  40. Mavi A (2018) Gri ilişkisel analiz yöntemi ile dubleks paslanmaz çeliklerin delinmesinde yüzey form özelliklerini etkileyen optimum kesme parametrelerinin belirlenmesi. Gazi Üniv Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 6:634–643. https://doi.org/10.29109/gujsc.395667

    Article  Google Scholar 

  41. Ekici E, Motorcu AR, Uzun G (2017) An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B4C composites. Measurement 95:395–404. https://doi.org/10.1016/j.measurement.2016.10.041

    Article  Google Scholar 

  42. Uzun G, Gökmen U, Çinici H, Türker M (2017) Effect of cutting parameters on the drilling of AISI7 metallic foams. Mater Technol 51(1):19–24. https://doi.org/10.17222/mit.2015.106

    Article  Google Scholar 

  43. Uzun H, Meral T, Günay M (2020) Modelling and optimization of burr height in fiber laser drilling of ferritic stainless steel. Manuf Technol Appl 1(2):32–39

    Google Scholar 

  44. Agapiou JS, DeVries MF (1990) On the determination of thermal phenomena during drilling-Part I-Analytical models of twist drill temperature distributions. Int J Mach Tools Manuf 30:203–215. https://doi.org/10.1016/0890-6955(90)90130-B

    Article  Google Scholar 

  45. Gökçe H (2019) Optimization of cutting tool and cutting parameters in face milling of Custom 450 through the Taguchi method. Adv Mater Sci Eng 1–11. https://doi.org/10.1155/2019/5868132

  46. Haung HT, Weng C, Chen CK (1994) Analysis of clearance and rake angles along cutting edge for Multifacet Drills (MFD). J Eng For Ind 116(8):8–16

    Article  Google Scholar 

  47. Uçak N, Çiçek A (2019) Investigation of the effects of cryogenic cooling on drilling performance in drilling of Inconel 718 superalloy. J Fac Eng Archit Gazi Univ 34(3):1241–1252. https://doi.org/10.17341/gazimmfd.460519

  48. Çakıroğlu R, Acır A (2013) Taguchi optimization method of tool chip interface temperature depending on the cutting parameters in drilling operations. Electron J Mach Technol 10(2):73–86

    Google Scholar 

  49. İsmail TEKAÜT, Halil DEMİR (2015) The effects of cutting tool coating and machining parameters in drilling of steel AISI H13 and AISI D2. J Fac Eng Archit Gazi Univ 30(2):289–296

    Google Scholar 

  50. Yaşar N, Boy M, Günay M (2017) The effect of drilling parameters for surface roughness in drilling of AA7075 alloy. 21st Innovative Manufacturing Engineering & Energy International Conference-IManE&E 2017, 8. https://doi.org/10.1051/matecconf/201711201018

  51. Uzun G, Yaşar SA, Korkut İ (2017) Investigation of the effect of cutting parameters on cutting force and hole quality of Ti-6Al-4V alloy in drilling. Karaelmas Sci Eng J 7(2):469–475

    Google Scholar 

  52. Bücker M, Oezkaya E, Hensler U, Biermann D (2020) A new flank face design leading to an ımproved process performance when drilling high-temperature nickel-base alloys. MIC Procedia, 020–026, 20th Machining Innovations Conference for Aerospace Industry 2020 (MIC 2020), December 2nd 2020, Hannover, Germany

Download references

Acknowledgements

The author would like to thank Çankırı Karatekin University Scientific Research Project Unit for provision of funding with the Project MYO801202B32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gökçe.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gökçe, H., Biberci, M.A. Investigation of Thrust Force, Drill Bit Temperature and Burr Height in the Drilling of Aluminum Alloy Used in Ammunition Wing Drive Systems. Exp Tech 46, 691–705 (2022). https://doi.org/10.1007/s40799-021-00501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-021-00501-0

Keywords

Navigation