Skip to main content

Advertisement

Log in

Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling

  • Mathematical Models of Stem Cell Behavior (M Kohandel and M Przedborski, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hematopoietic stem cells (HSCs) produce all blood cells via a tightly controlled production system. Disruptions to control mechanisms can induce serious disorders, including leukemias. In this review, we provide an overview of how mathematical modelling has contributed to our understanding of normal and pathological HSC biology.

Recent Findings

Through the increased availability of a variety of experimental and clinical data, new approaches to mathematically modelling HSCs have revealed how clonality is regulated in the hematopoietic system over time, how increasingly clonal hematopoietic and leukemic stem cell populations contribute to the development of acute myeloid leukemia, and the mechanisms and kinetics of HSC regulation.

Summary

Mathematical modelling is a complementary tool to quantitatively explore HSC and hematopoietic regulation. Studies combining experimental, clinical, and theoretical approaches have deepened our understanding of HSC biology and aid future investigations to reveal the mechanisms of HSC maintenance and production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Michor F. Mathematical models of cancer stem cells. J Clin Oncol. 2008;26:2854–61. Available from:. https://doi.org/10.1200/JCO.2007.15.2421.

    Article  PubMed  Google Scholar 

  2. MacLean AL, Lo Celso C, Stumpf MPH. Concise review: stem cell population biology: insights from hematopoiesis. Stem Cells. 2017;35:80–8. Available from:. https://doi.org/10.1002/stem.2508.

    Article  PubMed  Google Scholar 

  3. Stiehl T, Marciniak-Czochra A. How to characterize stem cells? Contributions from mathematical modeling. Curr Stem Cell Reports. 2019;5:57–65. https://doi.org/10.1007/s40778-019-00155-0A recent review on mathematical modelling approaches to understanding biological questions about stem cells in health and disease.

    Article  Google Scholar 

  4. Howard A, Pelc S. Nuclear incorporation of P32 as demonstrated by autoradiographs. Exp Cell Res. 1951;2:178–87 Available from: https://linkinghub.elsevier.com/retrieve/pii/0014482751900833.

    Article  CAS  Google Scholar 

  5. Lajtha LG. On the concept of the cell cycle. J Cell Comp Physiol, Available from. 1963;62(SUPPL1):143–5 http://www.ncbi.nlm.nih.gov/pubmed/14067857.

  6. Lajtha LG, Oliver R, Gurney CW. Kinetic model of a bone-marrow stem-cell population. Br J Haematol, Available from: http://www.ncbi.nlm.nih.gov/pubmed/13928151. 1962;8:442–60.

  7. Epifanova OI, Terskikh VV. On the resting periods in the cell cycle. Cell Prolif. 1969;2:75–93. Available from:. https://doi.org/10.1111/j.1365-2184.1969.tb00339.x.

    Article  Google Scholar 

  8. Burns FJ, Tannock IF. On the existence of a G0-phase in the cell cycle. Cell Prolif. 1970;3:321–34. https://doi.org/10.1111/j.1365-2184.1970.tb00340.x[cited 2016 Nov 8]. The first paper laying out the dynamic equation governing the behaviour of the most realistic stem cell model.

    Article  CAS  Google Scholar 

  9. Lebowitz JL, Rubinow SI. Grain count distributions in labeled cell populations. J Theor Biol. 1969;23:99–123 Available from: https://linkinghub.elsevier.com/retrieve/pii/0022519369900708.

    Article  CAS  Google Scholar 

  10. Mackey MC. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood. 1978;51:941–56 Available from: http://www.bloodjournal.org/content/51/5/941.

    Article  CAS  Google Scholar 

  11. Mackey MC. Periodic hematological disorders: quintessential examples of dynamical diseases. Chaos An Interdiscip J Nonlinear Sci. 2020;30:063123. Available from:. https://doi.org/10.1063/5.0006517.

    Article  CAS  Google Scholar 

  12. De Souza DC, Humphries AR. Dynamics of a mathematical hematopoietic stem-cell population model. SIAM J Appl Dyn Syst. 2019;18:808–52. Available from:. https://doi.org/10.1137/18M1165086.

    Article  Google Scholar 

  13. Colijn C, Fowler AC, Mackey MC. High frequency spikes in long period blood cell oscillations. J Math Biol. 2006;53:499–519 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16897014.

    Article  Google Scholar 

  14. Fowler AC, Mackey MC. Relaxation oscillations in a class of delay differential equations. SIAM J Appl Math. 2002;63:299–323. Available from:. https://doi.org/10.1137/S0036139901393512.

    Article  Google Scholar 

  15. Mackey MC, Rudnicki R. Global stability in a delayed partial differential equation describing cellular replication. J Math Biol. 1994;33:89–109. Available from:. https://doi.org/10.1007/BF00160175.

    Article  CAS  PubMed  Google Scholar 

  16. Mackey MC, Rudnicki R. A new criterion for the global stability of simultaneous cell replication and maturation processes. J Math Biol. 1999;38:195–219. Available from:. https://doi.org/10.1007/s002850050146.

    Article  Google Scholar 

  17. Colijn C, Mackey MC. Bifurcation and bistability in a model of hematopoietic regulation. SIAM J Appl Dyn Syst. 2007;6:378–94.

    Article  Google Scholar 

  18. Pujo-Menjouet L, Bernard S, Mackey MC. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J Appl Dyn Syst. 2005;4:312–32. Available from:. https://doi.org/10.1137/030600473.

    Article  Google Scholar 

  19. Mackey MC. Cell kinetic status of haematopoietic stem cells. Cell Prolif. Wiley Online Library. 2001;34:71–83.

    Article  CAS  Google Scholar 

  20. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges. Blood Rev. 2019;36:70–87 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0268960X18301395.

    Article  Google Scholar 

  21. Walenda T, Stiehl T, Braun H, Fröbel J, Ho AD, Schroeder T, et al. Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. Nie Q, editor. PLoS Comput Biol. 2014;10:e1003599. Available from:. https://doi.org/10.1371/journal.pcbi.1003599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sajid Z, Andersen M, Ottesen TJ. Mathematical analysis of the Cancitis model and the role of inflammation in blood cancer progression. Math Biosci Eng. 2019;16:8268–89 Available from: http://www.aimspress.com/article/10.3934/mbe.2019418. A mechanistic model of myeloproliferative neoplasms whose results help to inform clinical practices by guiding the use of anti-inflammatories during treatment of the neoplasms.

    Article  Google Scholar 

  23. Yang X, Wang J. Precision therapy for acute myeloid leukemia. J Hematol Oncol. 2018;11:3. https://doi.org/10.1186/s13045-017-0543-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793 LP–4807 Available from: http://www.bloodjournal.org/content/112/13/4793.abstract.

    Article  Google Scholar 

  25. Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene. 2006;25:1434–6 Available from: http://www.nature.com/articles/1209163.

    Article  CAS  Google Scholar 

  26. Bangsgaard OK, Andersen M, Skov V, Kjær L, Hasselbalch CH, Ottesen TJ. Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Math Biosci Eng. 2020;17:7645–70. https://doi.org/10.3934/mbe.2020389.

    Article  PubMed  Google Scholar 

  27. Andersen M, Sajid Z, Pedersen RK, Gudmand-Hoeyer J, Ellervik C, Skov V, et al. Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. Szecsi PB, editor. PLoS One. 2017;12:e0183620. https://doi.org/10.1371/journal.pone.0183620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alfonso S, Jenner AL, Craig M. Translational approaches to treating dynamical diseases through in silico clinical trials. Chaos An Interdiscip J Nonlinear Sci. 2020;30:123128. https://doi.org/10.1063/5.0019556.

    Article  CAS  Google Scholar 

  29. Craig M, Jenner AL, Namgung B, Lee LP, Goldman A. Engineering in medicine to address the challenge of cancer drug resistance: from micro- and nanotechnologies to computational and mathematical modeling. Chem Rev. 2020;121:3352–89. https://doi.org/10.1021/acs.chemrev.0c00356.

    Article  CAS  PubMed  Google Scholar 

  30. Stiehl T, Ho AD, Marciniak-Czochra A. Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis. Sci Rep. 2018;8:2809. https://doi.org/10.1038/s41598-018-21115-4The authors analyze two hypothetical models of acute myeloid leukemia that, when combined with clinical data, distinguish distinct subtypes in patients. Their predictions help to improve the diagnosis and treatment of acute myeloid leukemia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jäkel F, Worm O, Lange S, Mertelsmann R. A stochastic model of myeloid cell lineages in hematopoiesis and pathway mutations in acute myeloid leukemia. Feng Y-M, editor. PLoS One. 2018;13:e0204393. https://doi.org/10.1371/journal.pone.0204393The authors develop a stochastic model of acute myeloid leukemia progression that includes explicit regulation through growth factors to find that AML initiation must occur through two mutations in the same cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dingli D, Traulsen A, Pacheco JM. Compartmental architecture and dynamics of hematopoiesis. PLoS One. 2007;2:e345.

    Article  Google Scholar 

  33. Wu Z, Wang Y, Wang K, Zhou D. Stochastic stem cell models with mutation: a comparison of asymmetric and symmetric divisions. bioRxiv 2020; Available from: http://arxiv.org/abs/2010.03191

  34. McHale PT, Lander AD. The protective role of symmetric stem cell division on the accumulation of heritable damage. Beerenwinkel N, editor. PLoS Comput Biol. 2014;10:e1003802. https://doi.org/10.1371/journal.pcbi.1003802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ayachi S, Buscarlet M, Busque L. 60 Years of clonal hematopoiesis research: From X-chromosome inactivation studies to the identification of driver mutations. Exp Hematol. 2020;83:2–11 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301472X20300291.

    Article  CAS  Google Scholar 

  36. Abkowitz JL, Taboada M, Shelton GH, Catlin SN, Guttorp P, Kiklevich JV, et al. chromosome gene regulates hematopoietic stem cell kinetics. Proc Natl Acad Sci U S A. 1998;95:3862–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9520458.

    Article  CAS  Google Scholar 

  37. Catlin SNS, Busque L, Gale RRE, Guttorp P, Abkowitz JL. The replication rate of human hematopoietic stem cells in vivo. Blood. 2011;117:4460–6 Available from: http://bloodjournal.hematologylibrary.org/content/117/17/4460.short.

    Article  CAS  Google Scholar 

  38. Gale RE, Fielding AK, Harrison CN, Linch DC. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol. 1997;98:512–9. https://doi.org/10.1046/j.1365-2141.1997.2573078.x.

    Article  CAS  PubMed  Google Scholar 

  39. Lee-Six H, Kent DG. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Exp Hematol. 2020;83:12–24 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301472X20300242.

    Article  CAS  Google Scholar 

  40. Bolduc V, Chagnon P, Provost S, Dubé M-P, Belisle C, Gingras M, et al. No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. J Clin Invest. 2008;118:333–41 Available from: http://content.the-jci.org/articles/view/33166.

    Article  CAS  Google Scholar 

  41. Warren JT, Link DC. Clonal hematopoiesis and risk for hematologic malignancy. Blood 2020; Available from: https://ashpublications.org/blood/article/doi/10.1182/blood.2019000991/461663/Clonal-hematopoiesis-and-risk-for-hematologic

  42. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586:763–8 Available from: http://www.nature.com/articles/s41586-020-2819-2.

    Article  CAS  Google Scholar 

  43. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2014;506:328–33. https://doi.org/10.1038/nature13038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abelson S, Collord G, SWK N, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4 Available from: http://www.nature.com/articles/s41586-018-0317-6.

    Article  CAS  Google Scholar 

  45. Jaiswal S. Clonal hematopoiesis and non-hematologic disorders. Blood 2020; Available from: https://ashpublications.org/blood/article/doi/10.1182/blood.2019000989/461661/Clonal-hematopoiesis-and-nonhematologic-disorders

  46. Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC, et al. Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome Res. 2014;24:733–42.

    Article  CAS  Google Scholar 

  47. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science (80- ). 2020;367:1449–54. https://doi.org/10.1126/science.aay9333Analyzing a variety of data on clonal hematopoiesis, the authors establish the evolutionary dynamics of CH and predict that clonal hematopoiesis is broadly detectable when the threshold for diagnosis is lowered.

    Article  CAS  Google Scholar 

  48. Heyde A, Rohde D, McAlpine CS, Zhang S, Hoyer FF, Gerold JM, et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell. 2021;184:1348–1361.e22 Available from: https://www.sciencedirect.com/science/article/pii/S0092867421000921.

    Article  CAS  Google Scholar 

  49. Park DS, Akuffo AA, Muench DE, Grimes HL, Epling-Burnette PK, Maini PK, et al. Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem cell transplantation. Komarova NL, editor. PLOS Comput Biol. 2019;15:e1006913. https://doi.org/10.1371/journal.pcbi.1006913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Craig M, Humphries AR, Mackey MC. A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalisation. Bull Math Biol. 2016;78:2304–57.

    Article  CAS  Google Scholar 

  51. Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB. Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood. 2002;100:1302–9 Available from: https://ashpublications.org/blood/article/100/4/1302/106249/Deterministic-regulation-of-hematopoietic-stem.

    Article  Google Scholar 

  52. Goyal S, Kim S, Chen IS, Chou T. Mechanisms of blood homeostasis: lineage tracking and a neutral model of cell populations in rhesus macaques. BMC Biol BMC Biology. 2015;13:–85 Available from: http://www.biomedcentral.com/1741-7007/13/85.

  53. Kimura M. The neutral theory of molecular evolution: a review of recent evidence. Japanese J Genet. 1991;66:367–86 Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/jjg/66.367?from=CrossRef.

    Article  CAS  Google Scholar 

  54. Shahriyari L, Komarova N. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS One. 2013;8:e76195 Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812169/pdf/pone.0076195.pdf.

    Article  CAS  Google Scholar 

  55. Reddy GP, Tiarks CY, Pang L, Wuu J, Hsieh CC, Quesenberry PJ. Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood. 1997;90:2293–9.

    Article  CAS  Google Scholar 

  56. Dingli DS, Traulsen A, Michor F. (A) Symmetric stem cell replication and cancer. PLoS Comput Biol. 2007;3:0482–7.

    CAS  Google Scholar 

  57. Dingli D, Pacheco JM. Ontogenic growth of the haemopoietic stem cell pool in humans. Proc R Soc B. 2007;274:2497–501 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2274981&tool=pmcentrez&rendertype=abstract.

    Article  Google Scholar 

  58. Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561:–473, 8 Available from: http://www.nature.com/articles/s41586-018-0497-0. Combining retrospective (phylodynamics) and prospective (Moran and Wright-Fisher) models with whole genome and targeted sequencing, the authors predict that the size of the HSC pool contributing to blood production is around 100,000 cells, much larger than previous estimates. This has implications for our understanding of normal and pathological blood production.

  59. Abkowitz JL, Catlin SN, McCallie MT, Guttorp P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood. 2002;100:2665–7.

    Article  CAS  Google Scholar 

  60. Laurenti E, Frelin C, Iscove N, Dick JE, Laurenti E, Frelin C, et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302–13. https://doi.org/10.1016/j.stem.2015.01.017Using an agent-based model and in vivo experiments, the authors establish the G0 exit and cell cycle time of important hematopoietic cell subsets, notably the long-term and short-term HSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mackey MC, Glisovic S, Leclerc J-M, Pastore Y, Krajinovic M, Craig M. The timing of cyclic cytotoxic chemotherapy can worsen neutropenia and neutrophilia. Br J Clin Pharmacol John Wiley & Sons, Ltd. 2020. https://doi.org/10.1111/bcp.14424.

  62. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518:542–6. https://doi.org/10.1038/nature14242The authors combine in vivo experiments with a flux model of hematopoiesis to predict key kinetic parameters of hematopoietic stem cells and their progeny.

    Article  CAS  PubMed  Google Scholar 

Download references

Availability of Data and Material

N/A

Code Availability

N/A

Funding

MB and MC are funded by the CHU Sainte-Justine Immune Diseases and Cancer Pôle d’excellence and NSERC Discovery Grant RGPIN-2018-04546.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and approved this article.

Corresponding author

Correspondence to Morgan Craig.

Ethics declarations

Ethics Approval

N/A

Consent to Participate

N/A

Consent for Publication

N/A

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mathematical Models of Stem Cell Behavior

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunetti, M., Mackey, M.C. & Craig, M. Understanding Normal and Pathological Hematopoietic Stem Cell Biology Using Mathematical Modelling. Curr Stem Cell Rep 7, 109–120 (2021). https://doi.org/10.1007/s40778-021-00191-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-021-00191-9

Keywords

Navigation