Skip to main content

Advertisement

Log in

Biomechanical Regulation of Stem Cell Fate

  • Role of Classical Signaling Pathways in Stem Cell Maintenance (N Carlesso & A Cardoso, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the current insights into stem cell fate determination by biomechanics. We also highlight recent findings that illustrate how mechanotransduction conveys changes in the extrinsic environment to program stem cell fate and how the intrinsic mechanical properties of stem cells regulate their functions.

Recent Findings

Emerging evidence in stem cell biology has shown that extrinsic mechanical cues, especially the viscoelasticity and topography of the extracellular matrix (ECM), influence many aspects of stem cell behavior, including self-renewal and differentiation. Cell-intrinsic mechanical properties of hematopoietic stem cells (HSCs) play crucial roles in maintaining HSCs attachment to the physical microenvironment (niche), which is critical for preserving HSCs quiescence and hematopoietic regeneration.

Summary

The intrinsic and extrinsic mechanical properties play important roles in controlling stem cell function and fate direction. Using biomechanics as a novel regulator of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between biomechanics and stem cells. Ultimately, advances in the biomechanical regulation of stem cell fate will contribute to the development of regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee DA, Knight MM, Campbell JJ, Bader DL. Stem cell mechanobiology. J Cell Biochem. 2011;112(1):1–9. https://doi.org/10.1002/jcb.22758.

    Article  CAS  PubMed  Google Scholar 

  2. Zahari W, Hashim SN, Yusof MF, Osman ZF, Kannan TP, Mokhtar KI, et al. Immunomodulatory effect of cytokines in the differentiation of mesenchymal stem cells: a review. Curr Stem Cell Res Ther. 2017;12(3):197–206. https://doi.org/10.2174/1574888x11666160614103404.

    Article  CAS  PubMed  Google Scholar 

  3. Gentile P, Garcovich S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth-factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development. Cells-Basel. 2019:8(5). https://doi.org/10.3390/cells8050466.

  4. Fukuda S, Bian H, King AG, Pelus LM. The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood. 2007;110(3):860–9. https://doi.org/10.1182/blood-2006-06-031401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laterveer L, Lindley IJ, Heemskerk DP, Camps JA, Pauwels EK, Willemze R, et al. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8. Blood. 1996;87(2):781–8.

    Article  CAS  PubMed  Google Scholar 

  6. Laterveer L, Lindley IJ, Hamilton MS, Willemze R, Fibbe WE. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood. 1995;85(8):2269–75.

    Article  CAS  PubMed  Google Scholar 

  7. Ren R, Ocampo A, Liu GH, Izpisua Belmonte JC. Regulation of stem cell aging by metabolism and epigenetics. Cell Metab. 2017;26(3):460–74. https://doi.org/10.1016/j.cmet.2017.07.019.

    Article  CAS  PubMed  Google Scholar 

  8. Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–20. https://doi.org/10.1038/s41580-019-0103-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20. https://doi.org/10.1038/nm.3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calvi LM, Link DC. The hematopoietic stem cell niche in homeostasis and disease. Blood. 2015;126(22):2443–51. https://doi.org/10.1182/blood-2015-07-533588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–90. https://doi.org/10.1038/nri.2017.53.

    Article  CAS  PubMed  Google Scholar 

  12. Scadden DT. The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–9. https://doi.org/10.1038/nature04957.

    Article  CAS  PubMed  Google Scholar 

  13. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21. https://doi.org/10.1016/j.cell.2005.05.026.

    Article  CAS  PubMed  Google Scholar 

  14. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–43. https://doi.org/10.1038/nature12612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20(8):833–46. https://doi.org/10.1038/nm.3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. https://doi.org/10.1038/nature09262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157(1):41–50. https://doi.org/10.1016/j.cell.2014.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6. https://doi.org/10.1038/nm.3706.

    Article  CAS  PubMed  Google Scholar 

  19. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    CAS  PubMed  Google Scholar 

  20. Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, et al. Insight into mechanobiology: how stem cells feel mechanical forces and orchestrate biological functions. Int J Mol Sci. 2019;20(21). https://doi.org/10.3390/ijms20215337.

  21. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5. https://doi.org/10.1038/nature11885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728–42. https://doi.org/10.1038/nrm.2017.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Ju L, Rushdi M, Ge C, Zhu C. Receptor-mediated cell mechanosensing. Mol Biol Cell. 2017;28(23):3134–55. https://doi.org/10.1091/mbc.E17-04-0228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rushdi M, Li K, Yuan Z, Travaglino S, Grakoui A, Zhu C. Mechanotransduction in T cell development, differentiation and function. Cells-Basel. 2020:9(2). https://doi.org/10.3390/cells9020364.

  26. Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction. Curr Opin Cell Biol. 2019;56:34–44. https://doi.org/10.1016/j.ceb.2018.08.007.

    Article  CAS  PubMed  Google Scholar 

  27. Wang N. Review of cellular mechanotransduction. J Phys D Appl Phys. 2017;50(23). https://doi.org/10.1088/1361-6463/aa6e18.

  28. Roca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat Cell Biol. 2017;19(7):742–51. https://doi.org/10.1038/ncb3564.

    Article  CAS  PubMed  Google Scholar 

  29. Wolfenson H, Yang B, Sheetz MP. Steps in mechanotransduction pathways that control cell morphology. Annu Rev Physiol. 2019;81:585–605. https://doi.org/10.1146/annurev-physiol-021317-121245.

    Article  CAS  PubMed  Google Scholar 

  30. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12. https://doi.org/10.1038/nrm3896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Macri-Pellizzeri L, De-Juan-Pardo EM, Prosper F, Pelacho B. Role of substrate biomechanics in controlling (stem) cell fate: implications in regenerative medicine. J Tissue Eng Regen Med. 2018;12(4):1012–9. https://doi.org/10.1002/term.2586.

    Article  CAS  PubMed  Google Scholar 

  32. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003;93(1):32–9. https://doi.org/10.1161/01.Res.0000080317.92718.99.

    Article  CAS  PubMed  Google Scholar 

  33. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733–40. https://doi.org/10.1161/01.Cir.0000068356.38592.68.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan X, Zhang H, Wei YJ, Hu SS. Embryonic stem cell transplantation for the treatment of myocardial infarction: immune privilege or rejection. Transpl Immunol. 2007;18(2):88–93. https://doi.org/10.1016/j.trim.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  35. Fonseca SA, Costas RM, Pereira LV. Searching for naive human pluripotent stem cells. World J Stem Cells. 2015;7(3):649–56. https://doi.org/10.4252/wjsc.v7.i3.649.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7. https://doi.org/10.1126/science.282.5391.1145.

    Article  CAS  PubMed  Google Scholar 

  37. Lakins JN, Chin AR, Weaver VM. Exploring the link between human embryonic stem cell organization and fate using tension-calibrated extracellular matrix functionalized polyacrylamide gels. Methods Mol Biol (Clifton, NJ). 2012;916:317–50. https://doi.org/10.1007/978-1-61779-980-8_24.

    Article  CAS  Google Scholar 

  38. Przybyla L, Lakins JN, Sunyer R, Trepat X, Weaver VM. Monitoring developmental force distributions in reconstituted embryonic epithelia. Methods (San Diego, Calif). 2016;94:101–13. https://doi.org/10.1016/j.ymeth.2015.09.003.

    Article  CAS  Google Scholar 

  39. Przybyla L, Lakins JN, Weaver VM. Tissue mechanics orchestrate Wnt-dependent human embryonic stem cell differentiation. Cell Stem Cell. 2016;19(4):462–75. https://doi.org/10.1016/j.stem.2016.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping cell fate: influence of topographical substratum properties on embryonic stem cells. Tissue Eng B Rev. 2018;24(4):255–66. https://doi.org/10.1089/ten.TEB.2017.0468.

    Article  Google Scholar 

  41. zur Nieden NI, Turgman CC, Lang X, Larsen JM, Granelli J, Hwang YJ, et al. Fluorescent hydrogels for embryoid body formation and osteogenic differentiation of embryonic stem cells. ACS Appl Mater Interfaces. 2015;7(19):10599–605. https://doi.org/10.1021/acsami.5b02368.

    Article  CAS  PubMed  Google Scholar 

  42. Evans ND, Minelli C, Gentleman E, LaPointe V, Patankar SN, Kallivretaki M, et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur Cell Mater. 2009;18:1–13; discussion −4. https://doi.org/10.22203/ecm.v018a01.

    Article  CAS  PubMed  Google Scholar 

  43. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005;288(4):H1915–24. https://doi.org/10.1152/ajpheart.00956.2004.

    Article  CAS  PubMed  Google Scholar 

  44. Dasgupta I, McCollum D. Control of cellular responses to mechanical cues through YAP/TAZ regulation. J Biol Chem. 2019;294(46):17693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154(5):1047–59. https://doi.org/10.1016/j.cell.2013.07.042.

    Article  CAS  PubMed  Google Scholar 

  46. Qin H, Hejna M, Liu Y, Percharde M, Wossidlo M, Blouin L, et al. YAP induces human naive pluripotency. Cell Rep. 2016;14(10):2301–12. https://doi.org/10.1016/j.celrep.2016.02.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chung H, Lee BK, Uprety N, Shen W, Lee J, Kim J. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep. 2016;17(4):519–29. https://doi.org/10.15252/embr.201540933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. David BG, Fujita H, Yasuda K, Okamoto K, Panina Y, Ichinose J, et al. Linking substrate and nucleus via actin cytoskeleton in pluripotency maintenance of mouse embryonic stem cells. Stem Cell Res. 2019;41:101614. https://doi.org/10.1016/j.scr.2019.101614.

    Article  CAS  PubMed  Google Scholar 

  49. Krieg M, Arboleda-Estudillo Y, Puech PH, Kafer J, Graner F, Muller DJ, et al. Tensile forces govern germ-layer organization in zebrafish. Nat Cell Biol. 2008;10(4):429–36. https://doi.org/10.1038/ncb1705.

    Article  CAS  PubMed  Google Scholar 

  50. Chowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, et al. Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater. 2010;9(1):82–8. https://doi.org/10.1038/nmat2563.

    Article  CAS  PubMed  Google Scholar 

  51. Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol. 2010;191(3):631–44. https://doi.org/10.1083/jcb.201006094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conti MA, Even-Ram S, Liu C, Yamada KM, Adelstein RS. Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem. 2004;279(40):41263–6. https://doi.org/10.1074/jbc.C400352200.

    Article  CAS  PubMed  Google Scholar 

  53. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20. https://doi.org/10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. https://doi.org/10.1016/j.cell.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  55. Challenging Stem Cells. Cell. 2018:173(5):1063–5. https://doi.org/10.1016/j.cell.2018.05.010.

  56. Ireland RG, Simmons CA. Human pluripotent stem cell mechanobiology: manipulating the biophysical microenvironment for regenerative medicine and tissue engineering applications. Stem Cells. 2015;33(11):3187–96. https://doi.org/10.1002/stem.2105.

    Article  PubMed  Google Scholar 

  57. Isomursu A, Lerche M, Taskinen ME, Ivaska J, Peuhu E. Integrin signaling and mechanotransduction in regulation of somatic stem cells. Exp Cell Res. 2019;378(2):217–25. https://doi.org/10.1016/j.yexcr.2019.01.027.

    Article  CAS  PubMed  Google Scholar 

  58. Anneren C, Cowan CA, Melton DA. The Src family of tyrosine kinases is important for embryonic stem cell self-renewal. J Biol Chem. 2004;279(30):31590–8. https://doi.org/10.1074/jbc.M403547200.

    Article  CAS  PubMed  Google Scholar 

  59. Liu H, Jiang D, Chi F, Zhao B. The hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell. 2012;3(4):291–304. https://doi.org/10.1007/s13238-012-2919-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rognoni E, Walko G. The Roles of YAP/TAZ and the hippo pathway in healthy and diseased skin. Cells-Basel. 2019:8(5). https://doi.org/10.3390/cells8050411.

  61. Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014;15(6):642–56. https://doi.org/10.15252/embr.201438638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bae SJ, Kim M, Kim SH, Kwon YE, Lee JH, Kim J, et al. NEDD4 controls intestinal stem cell homeostasis by regulating the hippo signalling pathway. Nat Commun. 2015;6:6314. https://doi.org/10.1038/ncomms7314.

    Article  CAS  PubMed  Google Scholar 

  63. Shi J, Farzaneh M, Khoshnam SE. Yes-associated protein and PDZ binding motif: a critical signaling pathway in the control of human pluripotent stem cells self-renewal and differentiation. Cell Rep. 2020;22(2):55–61. https://doi.org/10.1089/cell.2019.0084.

    Article  CAS  Google Scholar 

  64. Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol. 2011;12(2):126–31. https://doi.org/10.1038/nrm3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50. https://doi.org/10.1002/jor.1100090504.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez-Cruz RD, Fonseca VC, Darling EM. Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci U S A. 2012;109(24):E1523–9. https://doi.org/10.1073/pnas.1120349109.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fu J, Wang YK, Yang MT, Desai RA, Yu X, Liu Z, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7(9):733–6. https://doi.org/10.1038/nmeth.1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benayahu D, Wiesenfeld Y, Sapir-Koren R. How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol. 2019;234(8):12133–41. https://doi.org/10.1002/jcp.28099.

    Article  CAS  PubMed  Google Scholar 

  69. Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci U S A. 2007;104(12):5091–6. https://doi.org/10.1073/pnas.0610819104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83. https://doi.org/10.1038/nature10137.

    Article  CAS  PubMed  Google Scholar 

  71. Lo CM, Wang HB, Dembo M, Wang YL. Cell movement is guided by the rigidity of the substrate. Biophys J. 2000;79(1):144–52. https://doi.org/10.1016/s0006-3495(00)76279-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurpinski K, Chu J, Hashi C, Li S. Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci U S A. 2006;103(44):16095–100. https://doi.org/10.1073/pnas.0604182103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. MacQueen L, Sun Y, Simmons CA. Mesenchymal stem cell mechanobiology and emerging experimental platforms. J R Soc Interface. 2013;10(84):20130179. https://doi.org/10.1098/rsif.2013.0179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6(4):483–95. https://doi.org/10.1016/s1534-5807(04)00075-9.

    Article  CAS  PubMed  Google Scholar 

  75. Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7. https://doi.org/10.1073/pnas.0903269107.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mohammed D, Versaevel M, Bruyere C, Alaimo L, Luciano M, Vercruysse E, et al. Innovative tools for mechanobiology: unraveling outside-in and inside-out mechanotransduction. Front Bioeng Biotechnol. 2019;7:162. https://doi.org/10.3389/fbioe.2019.00162.

    Article  PubMed  PubMed Central  Google Scholar 

  77. De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet. 2000;16(9):389–95. https://doi.org/10.1016/s0168-9525(00)02074-6.

    Article  PubMed  Google Scholar 

  78. Mor-Yossef Moldovan L, Lustig M, Naftaly A, Mardamshina M, Geiger T, Gefen A, et al. Cell shape alteration during adipogenesis is associated with coordinated matrix cues. J Cell Physiol. 2019;234(4):3850–63. https://doi.org/10.1002/jcp.27157.

    Article  CAS  PubMed  Google Scholar 

  79. Hao J, Zhang Y, Wang Y, Ye R, Qiu J, Zhao Z, et al. Role of extracellular matrix and YAP/TAZ in cell fate determination. Cell Signal. 2014;26(2):186–91. https://doi.org/10.1016/j.cellsig.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  80. Murali A, Rajalingam K. Small rho GTPases in the control of cell shape and mobility. Cell Mol Life Sci. 2014;71(9):1703–21. https://doi.org/10.1007/s00018-013-1519-6.

    Article  CAS  PubMed  Google Scholar 

  81. Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, et al. The hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010;18(4):579–91. https://doi.org/10.1016/j.devcel.2010.03.007.

    Article  CAS  PubMed  Google Scholar 

  82. Hong W, Guan KL. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012;23(7):785–93. https://doi.org/10.1016/j.semcdb.2012.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1(8):661–73. https://doi.org/10.1016/1074-7613(94)90037-x.

    Article  CAS  PubMed  Google Scholar 

  84. Cheshier SH, Morrison SJ, Liao X, Weissman IL. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A. 1999;96(6):3120–5. https://doi.org/10.1073/pnas.96.6.3120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Clevers HSTEMCELLS. What is an adult stem cell? Science. 2015;350(6266):1319–20. https://doi.org/10.1126/science.aad7016.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther. 2019;10(1):327. https://doi.org/10.1186/s13287-019-1422-7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, et al. Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell. 2019;24(4):608–20.e6. https://doi.org/10.1016/j.stem.2019.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV, Nivison-Smith LB, et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol. 2010;28(10):1123–8. https://doi.org/10.1038/nbt.1687.

    Article  CAS  PubMed  Google Scholar 

  89. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463(7280):485–92. https://doi.org/10.1038/nature08908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Svitkina TM. Ultrastructure of the actin cytoskeleton. Curr Opin Cell Biol. 2018;54:1–8. https://doi.org/10.1016/j.ceb.2018.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol. 2018;10(1). https://doi.org/10.1101/cshperspect.a018267.

  92. Shin JW, Spinler KR, Swift J, Chasis JA, Mohandas N, Discher DE. Lamins regulate cell trafficking and lineage maturation of adult human hematopoietic cells. Proc Natl Acad Sci U S A. 2013;110(47):18892–7. https://doi.org/10.1073/pnas.1304996110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shin JW, Buxboim A, Spinler KR, Swift J, Christian DA, Hunter CA, et al. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell. 2014;14(1):81–93. https://doi.org/10.1016/j.stem.2013.10.009.

    Article  CAS  PubMed  Google Scholar 

  94. Sedzinski J, Biro M, Oswald A, Tinevez JY, Salbreux G, Paluch E. Polar actomyosin contractility destabilizes the position of the cytokinetic furrow. Nature. 2011;476(7361):462–6. https://doi.org/10.1038/nature10286.

    Article  CAS  PubMed  Google Scholar 

  95. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420(6916):629–35. https://doi.org/10.1038/nature01148.

    Article  CAS  PubMed  Google Scholar 

  96. Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol. 2012;13(3):183–94. https://doi.org/10.1038/nrm3284.

    Article  CAS  PubMed  Google Scholar 

  97. Lam M, Calvo F. Regulation of mechanotransduction: emerging roles for septins. Cytoskeleton (Hoboken, NJ). 2019;76(1):115–22. https://doi.org/10.1002/cm.21485.

    Article  Google Scholar 

  98. Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol. 2014;16(4):322–34. https://doi.org/10.1038/ncb2921.

    Article  CAS  PubMed  Google Scholar 

  99. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104(24):10158–63. https://doi.org/10.1073/pnas.0703478104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8. https://doi.org/10.1038/367645a0.

    Article  CAS  PubMed  Google Scholar 

  101. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9. https://doi.org/10.1038/nm.2304.

    Article  CAS  PubMed  Google Scholar 

  102. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7. https://doi.org/10.1038/nm0797-730.

    Article  CAS  PubMed  Google Scholar 

  103. Diehn M, Clarke MF. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst. 2006;98(24):1755–7. https://doi.org/10.1093/jnci/djj505.

    Article  PubMed  Google Scholar 

  104. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43. https://doi.org/10.1038/nrc3184.

    Article  CAS  PubMed  Google Scholar 

  105. LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J. 2020;34(3):3519–36. https://doi.org/10.1096/fj.201903188R.

    Article  CAS  PubMed  Google Scholar 

  106. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  107. Roy Choudhury A, Gupta S, Chaturvedi PK, Kumar N, Pandey D. Mechanobiology of cancer stem cells and their niche. Cancer Microenviron. 2019;12(1):17–27. https://doi.org/10.1007/s12307-019-00222-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zanotelli MR, Reinhart-King CA. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol. 2018;1092:91–112. https://doi.org/10.1007/978-3-319-95294-9_6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406. https://doi.org/10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225–38. https://doi.org/10.1016/j.stem.2015.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906. https://doi.org/10.1016/j.cell.2009.10.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of Cancer. Cancer Cell. 2016;29(6):783–803. https://doi.org/10.1016/j.ccell.2016.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported in part by the National Key Research and Development Project to FN (No. 2019YFA0801800) and the National Natural Science Foundation of China to FN (No. 32070916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Ni.

Ethics declarations

Conflict of Interest

Linlin Jin, Ping Wang, and Fang Ni declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Role of Classical Signaling Pathways in Stem Cell Maintenance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Wang, P. & Ni, F. Biomechanical Regulation of Stem Cell Fate. Curr Stem Cell Rep 7, 30–38 (2021). https://doi.org/10.1007/s40778-020-00183-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-020-00183-1

Keywords

Navigation