Skip to main content

Advertisement

Log in

Hematopoietic Stem Cell Stress and Regeneration

  • Cancer and Stem Cells (MD Filippi, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hematopoietic stem cells (HSCs) propagate the hematopoietic system throughout the lifetime of an individual. Beyond homeostatic regulation, HSCs respond to many stressors, including infection, aging, irradiation, and chemotherapy, through distinct cellular and molecular pathways to restore homeostasis. Here, we review how HSCs and bone marrow niche cells respond to various stressors and their role in HSC regeneration.

Recent Findings

In this review, we summarize the manner in which HSCs respond to different stressors via intrinsic and extrinsic, and niche-driven mechanisms to support hematopoietic regeneration. We discuss recent work defining the cellular and molecular mechanisms by which HSCs respond to various forms of stress through specific alterations in cell cycling, DNA damage repair, and cell death. We also summarize the roles of recently defined bone marrow niche cell subtypes and niche-derived factors in mediating HSC regeneration.

Summary

Stress through aging, inflammation, and myelosuppressive treatments significantly alters hematopoietic homeostasis, requiring HSCs to quickly respond to restore order. In the event that an inadequate HSC response occurs, patients are at risk for life-threatening complications such as hemorrhage, infection and bone marrow failure. In this review, we summarize recent work defining how HSCs respond to stress and the role of the bone marrow niche in HSC regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010;2(6):640–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Venezia TA, et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004;2(10):1640–51.

    Article  CAS  Google Scholar 

  3. Rossi DJ, et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A. 2005;102(26):9194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim M, Moon HB, Spangrude GJ. Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann N Y Acad Sci. 2003;996:195–208.

    Article  PubMed  Google Scholar 

  5. Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood. 2005;106(4):1479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kohler A, et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood. 2009;114(2):290–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Florian MC, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10(5):520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beerman I, et al. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell. 2014;15(1):37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Haan G, Nijhof W, Van Zant G. Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood. 1997;89(5):1543–50.

    Article  PubMed  Google Scholar 

  10. •• Rossi DJ, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447(7145):725–9 Describes the role of DNA damage repair mechanisms in regulating HSC fitness during aging.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi DJ, et al. Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle. 2007;6(19):2371–6.

    Article  CAS  PubMed  Google Scholar 

  12. Nagai Y, et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity. 2006;24(6):801–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takizawa H, et al. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med. 2011;208(2):273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baldridge MT, et al. Quiescent hematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature. 2010;465(7299):793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen C, et al. Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J Clin Invest. 2010;120(11):4091–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Essers MA, et al. IFNalpha activates dormant hematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8.

    Article  CAS  PubMed  Google Scholar 

  17. Herman AC, et al. Systemic TLR2 agonist exposure regulates hematopoietic stem cells via cell-autonomous and cell-non-autonomous mechanisms. Blood Cancer J. 2016;6:e437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. • Pietras EM, et al. Chronic interleukin-1 exposure drives hematopoietic stem cells toward precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18(6):607–18 Demonstrated how chronic inflammation promotes myeloid cell production and reduces HSC self-renewal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takizawa H, et al. Pathogen-induced TLR4-TRIF innate immune signaling in hematopoietic stem cells promotes proliferation but reduces competitive fitness. Cell Stem Cell. 2017;21(2):225–240 e5.

    Article  CAS  PubMed  Google Scholar 

  20. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.

    Article  CAS  PubMed  Google Scholar 

  21. Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14(5):302–14.

    Article  CAS  PubMed  Google Scholar 

  22. Matatall KA, et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 2016;17(10):2584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matatall KA, et al. Type II interferon promotes differentiation of myeloid-biased hematopoietic stem cells. Stem Cells. 2014;32(11):3023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pietras EM, et al. Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med. 2014;211(2):245–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schuettpelz LG, et al. G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling. Leukemia. 2014;28(9):1851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirche C, et al. Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo. Cell Rep. 2017;19(11):2345–56.

    Article  CAS  PubMed  Google Scholar 

  27. Meng A, et al. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol. 2003;31(12):1348–56.

    Article  CAS  PubMed  Google Scholar 

  28. van Bekkum DW. Radiation sensitivity of the hemopoietic stem cell. Radiat Res. 1991;128(1 Suppl):S4–8.

    Article  PubMed  Google Scholar 

  29. Wagemaker G. Heterogeneity of radiation sensitivity of hemopoietic stem cell subsets. Stem Cells. 1995;13(Suppl 1):257–60.

    Article  PubMed  Google Scholar 

  30. Wang Y, et al. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107(1):358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A. 2001;98(25):14541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiel MJ, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–21.

    Article  CAS  PubMed  Google Scholar 

  33. Oguro H, Ding L, Morrison SJ. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell. 2013;13(1):102–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singh S, Jakubison B, Keller JR. Protection of hematopoietic stem cells from stress-induced exhaustion and aging. Curr Opin Hematol. 2020;27(4):225–31.

    Article  PubMed  Google Scholar 

  35. Zhao JL, Baltimore D. Regulation of stress-induced hematopoiesis. Curr Opin Hematol. 2015;22(4):286–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shao L, Luo Y, Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid Redox Signal. 2014;20(9):1447–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Domen J, Cheshier SH, Weissman IL. The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med. 2000;191(2):253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Domen J, Gandy KL, Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood. 1998;91(7):2272–82.

    Article  CAS  PubMed  Google Scholar 

  39. Hoyes KP, et al. Effect of bcl-2 deficiency on the radiation response of clonogenic cells in small and large intestine, bone marrow and testis. Int J Radiat Biol. 2000;76(11):1435–42.

    Article  CAS  PubMed  Google Scholar 

  40. Cui YF, et al. Apoptosis in bone marrow cells of mice with different p53 genotypes after gamma-rays irradiation in vitro. J Environ Pathol Toxicol Oncol. 1995;14(3–4):159–63.

    CAS  PubMed  Google Scholar 

  41. Hirabayashi Y, et al. The p53-deficient hemopoietic stem cells: their resistance to radiation-apoptosis. but lasted transiently Leukemia. 1997;11(Suppl 3):489–92.

    PubMed  Google Scholar 

  42. Komarov PG, et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science. 1999;285(5434):1733–7.

    Article  CAS  PubMed  Google Scholar 

  43. Lee JM, Bernstein A. p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci U S A. 1993;90(12):5742–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shao L, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood. 2010;115(23):4707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu WS, et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell. 2005;123(4):641–53.

    Article  CAS  PubMed  Google Scholar 

  46. •• Mohrin M, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 2010;7(2):174–85 Characterized the distinct DNA repair responses in HSPCs compared to committed progenitor cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beerman I, et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013;12(4):413–25.

    Article  CAS  PubMed  Google Scholar 

  48. He S, et al. Transient CDK4/6 inhibition protects hematopoietic stem cells from chemotherapy-induced exhaustion. Sci Transl Med. 2017;9(387):eaaI3986.

  49. Arai F, Suda T. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci. 2007;1106:41–53.

    Article  CAS  PubMed  Google Scholar 

  50. Heidt T, et al. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014;20(7):754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh SK, et al. Id1 Ablation protects hematopoietic stem cells from stress-induced exhaustion and aging. Cell Stem Cell. 2018;23(2):252–265 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karigane D, et al. p38alpha activates purine metabolism to initiate hematopoietic stem/progenitor cell cycling in response to stress. Cell Stem Cell. 2016;19(2):192–204.

    Article  CAS  PubMed  Google Scholar 

  53. Chen J. Senescence of hematopoietic stem cells and bone marrow failure. Int J Hematol. 2005;82(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  54. Marcotte R, Wang E. Replicative senescence revisited. J Gerontol A Biol Sci Med Sci. 2002;57(7):B257–69.

    Article  PubMed  Google Scholar 

  55. Serrano M, Blasco MA. Putting the stress on senescence. Curr Opin Cell Biol. 2001;13(6):748–53.

    Article  CAS  PubMed  Google Scholar 

  56. Toussaint O, et al. Stress-induced premature senescence as alternative toxicological method for testing the long-term effects of molecules under development in the industry. Biogerontology. 2000;1(2):179–83.

    Article  CAS  PubMed  Google Scholar 

  57. Debacq-Chainiaux F, et al. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–806.

    Article  CAS  PubMed  Google Scholar 

  58. Stepanova L, Sorrentino BP. A limited role for p16Ink4a and p19Arf in the loss of hematopoietic stem cells during proliferative stress. Blood. 2005;106(3):827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Milyavsky M, et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell. 2010;7(2):186–97.

    Article  CAS  PubMed  Google Scholar 

  60. de Laval B, et al. Thrombopoietin-increased DNA-PK-dependent DNA repair limits hematopoietic stem and progenitor cell mutagenesis in response to DNA damage. Cell Stem Cell. 2013;12(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  61. Fang T, et al. Epidermal growth factor receptor-dependent DNA repair promotes murine and human hematopoietic regeneration. Blood. 2020;136(4):441–54.

  62. Yahata T, et al. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood. 2011;118(11):2941–50.

    Article  CAS  PubMed  Google Scholar 

  63. •• Flach J, et al. Replication stress is a potent driver of functional decline in aging hematopoietic stem cells. Nature. 2014;512(7513):198–202 Demonstrated the importance of replication stress in promoting the functional decline of aging HSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Katoh O, et al. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res. 1995;55(23):5687–92.

    CAS  PubMed  Google Scholar 

  65. Gerber HP, et al. VEGF regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417(6892):954–8.

    Article  CAS  PubMed  Google Scholar 

  66. Chen Q, et al. Apelin(+) endothelial niche cells control hematopoiesis and mediate vascular regeneration after myeloablative injury. Cell Stem Cell. 2019;25(6):768–783 e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou B, et al. Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1. eLIFE 2015;4:e05521.

  68. Zhao M, et al. FGF signaling facilitates postinjury recovery of mouse hematopoietic system. Blood. 2012;120(9):1831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao Y, et al. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells. Exp Hematol. 2005;33(4):428–34.

    Article  CAS  PubMed  Google Scholar 

  70. Xu C, et al. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun. 2018;9(1):2449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zhao M, et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med. 2014;20(11):1321–6.

    Article  CAS  PubMed  Google Scholar 

  72. • Zhou BO, et al. Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903 Demonstrated the role of adipocytes in promoting hematopoietic stem cell regeneration in vivo following myelosuppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bowie MB, et al. Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood. 2007;109(11):5043–8.

    Article  CAS  PubMed  Google Scholar 

  74. Hassan HT, Zander Z. Stem cell factor as a survival and growth factor in human normal and malignant hematopoiesis. Acta Haematol. 1996;95(3–4):257–62.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin Hematol. 2008;15(4):307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ding L, Morrison SJ. Hematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greenbaum A, et al. CXCL12 in early mesenchymal progenitors is. required for hematopoietic stem-cell maintenance. Nature. 2013;495(7440):227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205(4):777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tzeng YS, et al. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood. 2011;117(2):429–39.

    Article  CAS  PubMed  Google Scholar 

  80. Brenner D, Blaser H, Mak TW. Regulation of tumor necrosis factor signaling: live or let die. Nat Rev Immunol. 2015;15(6):362–74.

    Article  CAS  PubMed  Google Scholar 

  81. Yamashita M, Passegue E. TNF-alpha coordinates hematopoietic stem cell survival and myeloid regeneration. Cell Stem Cell. 2019;25(3):357 − +.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. •• Hooper AT, et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell. 2009;4(3):263–74 Demonstrated the essential role of VEGFR+ endothelial cells in regulating hematopoietic regeneration following myelosuppression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Salter AB, et al. Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood. 2009;113(9):2104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Himburg HA, et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med. 2010;16(4):475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Himburg HA, et al. Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration. Cell Stem Cell. 2018;23(3):370–381 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Doan PL, et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat Med. 2013;19(3):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Himburg HA, et al. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med. 2017;23(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  88. Guo P, et al. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. J Clin Invest. 2017;127(12):4242–56.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Poulos MG, et al. Endothelial jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 2013;4(5):1022–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Morrison SJ, Scadden DT. The bone marrow niche for hematopoietic stem cells. Nature. 2014;505(7483):327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wei QZ, Frenette PS. Niches for hematopoietic stem cells and their progeny. Immunity. 2018;48(4):632–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014;35(1):32–7.

    Article  CAS  PubMed  Google Scholar 

  93. Ding L, et al. Endothelial and perivascular cells maintain hematopoietic stem cells. Nature. 2012;481(7382):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Naveiras O, et al. Bone-marrow adipocytes as negative regulators of the hematopoietic microenvironment. Nature. 2009;460(7252):259–U124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Caselli A, et al. IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells. 2013;31(10):2193–204.

    Article  CAS  PubMed  Google Scholar 

  96. Olson TS, et al. Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood. 2013;121(26):5238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goncalves KA, et al. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell. 2016;166(4):894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Silberstein L, et al. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 2016;19(4):530–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pinho S, Frenette PS. Hematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol. 2019;20(5):303–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bruns I, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20(11):1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakamura-Ishizu A, et al. Megakaryocytes are essential for HSC quiescence through the production of thrombopoietin. Biochem Biophys Res Commun. 2014;454(2):353–7.

    Article  CAS  PubMed  Google Scholar 

  102. Nakamura-Ishizu A, et al. CLEC-2 in megakaryocytes is critical for maintenance of hematopoietic stem cells in the bone marrow (vol 212, pg 2133, 2015). J Exp Med. 2015;212(13):2323.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bowers E, et al. Granulocyte-derived TNF alpha promotes vascular and hematopoietic regeneration in the bone marrow. Nat Med. 2018;24(1):95 − +.

    Article  PubMed  CAS  Google Scholar 

  104. Katayama Y, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.

    Article  CAS  PubMed  Google Scholar 

  105. Mendez-Ferrer S, et al. Hematopoietic stem cell release is regulated by circadian oscillations. Nature. 2008;452(7186):442–U4.

    Article  CAS  PubMed  Google Scholar 

  106. Mendez-Ferrer S, Battista M, Frenette PS. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Skelet Biol Med. 2010;1192:139–44.

    CAS  Google Scholar 

  107. Lucas D, et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013;19(6):695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Boettcher S, Ebert BL. Clonal hematopoiesis of indeterminate potential. J Clin Oncol. 2019;37(5):419–22.

    Article  CAS  PubMed  Google Scholar 

  109. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by funding from the NIAID AI107333 (JPC), NIAID AI067769 (JPC), the CIRM Leadership Award LA1-08014 (JPC), the Damon Runyon Cancer Foundation DRG-2327-18 (CMT), the Burroughs Wellcome Fund PDEP #1018686 (CMT), and the UC President’s Postdoctoral Fellowship (CMT).

Author information

Authors and Affiliations

Authors

Contributions

CMT and JPC wrote the paper; CMT developed the figures.

Corresponding author

Correspondence to John P. Chute.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer and Stem Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Termini, C.M., Chute, J.P. Hematopoietic Stem Cell Stress and Regeneration. Curr Stem Cell Rep 6, 134–143 (2020). https://doi.org/10.1007/s40778-020-00181-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-020-00181-3

Keywords

Navigation