Skip to main content

Advertisement

Log in

Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine

  • Artificial Tissues (A Atala and JG Hunsberger, Section Editors)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The review covers biosensing technologies, their impact on healthcare, and future applications.

Recent Findings

Advancements in biosensing technologies that can detect a wide range of bioanalytes at reduced costs are described.

Summary

Biosensing technologies are becoming essential for advancing human healthcare. A biosensor detects a specific biological analyte and monitors its function within a biological milieu; this technology has gained the attention of many researchers worldwide owing to its importance in medical applications. Noninvasive, cost-effective, high-resolution, and portable biosensors can be extensively utilized; however, there remain numerous challenges to overcome, including real-time, in vivo monitoring of organ functionality in high-risk patients. Herein, we review biosensors, their fabrication, and their various uses. Additionally, we provide an overview of their role in medical applications such as cardiovascular disease, diabetes, wound healing, cancer diagnosis, and prosthesis fabrication. Furthermore, the applications of biosensing technologies in regenerative medicine such as biomanufacturing procedures, organ-on-a-chip technologies, and indicators of therapeutic efficacy are discussed. Finally, an overall perspective of the field and its potential future directions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. • Perumal V, Hashim U. Advances in biosensors: principle, architecture and applications. J Appl Biomed. 2014;12:1–15. This paper gives a comprehensive picture of biosensors and their applications.

    Article  Google Scholar 

  2. Shafiee A, McCune M, Forgacs G, Kosztin I. Post-deposition bioink self-assembly: a quantitative study. Biofabrication. IOP; 2015;7:045005.

  3. McCune M, Shafiee A, Forgacs G, Kosztin I. Predictive modeling of post bioprinting structure formation. Soft Matter. Royal Soc Chem. 2014;10:1790–800.

    CAS  Google Scholar 

  4. Rao M, Mason C, Solomon S. Cell therapy worldwide: an incipient revolution. Regen Med. 2015;10:181–91.

    Article  PubMed  CAS  Google Scholar 

  5. • Shafiee A, Norotte C, Ghadiri E. Cellular bioink surface tension: a tunable biophysical parameter for faster maturation of bioprinted tissue. Bioprinting. 2017;8:13–21. This paper presents a new approach to expedite tissue maturation, a critical step in biofabrication of biological structures.

    Article  Google Scholar 

  6. • Goode JA, Rushworth JVH, Millner PA. Biosensor regeneration: a review of common techniques and outcomes. Langmuir. 2015;31:6267–76. This paper provides a systematic study on biosensor regeneration.

    Article  PubMed  CAS  Google Scholar 

  7. Abouzeid J, Darwish G, Karam P. Biosensors for optimal tissue engineering: recent developments and shaping the future. Tissue engineering for artificial organs. Wiley-VCH Verlag GmbH & Co. KGaA; 2017. pp. 143–67.

  8. Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers. 2017;9:364.

    Article  CAS  Google Scholar 

  9. Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30:489–511.

    Article  PubMed  CAS  Google Scholar 

  10. Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron. 1999;14:443–56.

    Article  PubMed  CAS  Google Scholar 

  11. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv. 2010;28:232–54.

    Article  PubMed  CAS  Google Scholar 

  12. • Du Y, Dong S. Nucleic acid biosensors: recent advances and perspectives. Anal Chem, 215. 2017;89:189. The applications of nucleic acids in biosensing technologies are discussed in this paper.

  13. Gui Q, Lawson T, Shan S, Yan L, Liu Y. The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors. 2017;17:1623.

    Article  PubMed Central  CAS  Google Scholar 

  14. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev. 2014;114:6423–61.

    Article  PubMed  CAS  Google Scholar 

  15. Ertürk G, Mattiasson B. Molecular imprinting techniques used for the preparation of biosensors. Sensors. 2017;17:288.

    Article  PubMed Central  CAS  Google Scholar 

  16. Wang Y, Xu H, Zhang J, Li G. Electrochemical sensors for clinic analysis. Sensors. 2008;8:2043–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ghadiri E, zad AI, Razi F. Hydrogen sensing properties of pure and Pd activated WO3 nanostructured films. Synthesis & Reactivity in Inorg, Metal-Org, & Nano-Metal Chem. 2007;37(6):453–6.

    Article  CAS  Google Scholar 

  18. Wu L, Lu X, Fu X, Wu L, Liu H. Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection. Sci Rep. 2017;7:5191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yi X, Wu Y, Tan G, Yu P, Zhou L, Zhou Z, et al. Palladium nanoparticles entrapped in a self-supporting nanoporous gold wire as sensitive dopamine biosensor. Sci Rep. 2017;7:7941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chen Y, Ren R, Pu H, Guo X, Chang J, Zhou G, et al. Field-effect transistor biosensor for rapid detection of Ebola antigen. Sci Rep. 2017;7:10974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ghadiri E, Taghavinia N, Aghabozorg HR, Iraji zad A. TiO2 nanotubular fibers sensitized with CdS nanoparticles. Eur Phys J Appl Phys. 2010;50:20601.

    Article  CAS  Google Scholar 

  22. Bottazzi B, Fornasari L, Frangolho A, Giudicatti S, Mantovani A, Marabelli F, et al. Multiplexed label-free optical biosensor for medical diagnostics. J Biomed Opt. 2014;19:017006.

    Article  CAS  Google Scholar 

  23. Monošík R, Stred’anský M, Šturdík E. Application of electrochemical biosensors in clinical diagnosis. J Clin Lab Anal. 2014;26:22–34.

    Article  CAS  Google Scholar 

  24. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8:1400–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Seong J, Ouyang M, Kim T, Sun J, Wen P-C, Lu S, et al. Detection of focal adhesion kinase activationat membrane microdomains by uorescenceresonance energy transfer. Nat Commun Nat Publ Group. 2011;2:406–9.

    Article  CAS  Google Scholar 

  26. Day RN, Tao W, Dunn KW. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy. Nat Protoc. 2016;11:2066–80.

    Article  PubMed  CAS  Google Scholar 

  27. Koncki R, Mohr GJ, Wolfbeis OS. Enzyme biosensor for urea based on a novel pH bulk optode membrane. Biosens Bioelectron. 1995;10:653–9.

    Article  PubMed  CAS  Google Scholar 

  28. Vo-Dinh T. Biosensors and biochips. In: Ferrari M, Bashir R, Wereley S, editors. BioMEMS and biomedical nanotechnology: volume IV: biomolecular sensing, processing and analysis. Boston: Springer; 2007. p. 1–20.

    Google Scholar 

  29. Geng Z, Zhang X, Fan Z, Lv X, Chen H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep. 2017;7:16378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lee J-H, Kim B-C, Oh B-K, Choi J-W. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedicine. 2013;9:1018–26.

    Article  PubMed  CAS  Google Scholar 

  31. Song Y, Wei W, Qu X. Colorimetric biosensing using smart materials. Adv Mater. 2011;23:4215–36.

    Article  PubMed  CAS  Google Scholar 

  32. Fu YQ, Luo JK, Nguyen NT, Walton AJ, Flewitt AJ, Zu XT, et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog Mater Sci. 2017;89:31–91.

    Article  CAS  Google Scholar 

  33. Aldous SJ. Cardiac biomarkers in acute myocardial infarction. Int J Cardiol. 2013;164:282–94.

    Article  PubMed  Google Scholar 

  34. •• Kim K, Park C, Kwon D, Kim D, Meyyappan M, Jeon S, et al. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron. 2016;77:695–701. This paper reports the fabrication of a silicon nanowire field-effective transistor for highly sensitive and label-free detection of cardiac troponin I.

    Article  PubMed  CAS  Google Scholar 

  35. Sarangadharan I, Regmi A, Chen Y-W, Hsu C-P, Chen P-C, Chang W-H, et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN high electron mobility transistor (HEMT) biosensors. Biosens Bioelectron. 2018;100:282–9.

    Article  PubMed  CAS  Google Scholar 

  36. Shanmugam NR, Muthukumar S, Prasad S. Ultrasensitive and low-volume point-of-care diagnostics on flexible strips—a study with cardiac troponin biomarkers. Sci Rep. 2016;6:33423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shafiee A, Salleh MM, Yahaya M. Fabrication of organic solar cells based on a blend of donor-acceptor molecules by inkjet printing technique. IEEE International Conference on Semiconductor Electrionics, ICSE 2008. pp. 319–22.

  38. Shafiee A, Mat Salleh M, Yahaya M. Fabrication of organic solar cells based on a blend of poly (3-octylthiophene-2, 5-diyl) and fullerene derivative using inkjet printing technique. SPIE Proc. 2009;7493:74932D.

    Article  CAS  Google Scholar 

  39. Moreira FTC, Dutra RAF, Noronha JP, Sales MGF. Novel sensory surface for creatine kinase electrochemical detection. Biosens Bioelectron. 2014;56:217–22.

    Article  PubMed  CAS  Google Scholar 

  40. Gupta RK, Periyakaruppan A, Meyyappan M, Koehne JE. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens Bioelectron. 2014;59:112–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hwang J, Seo Y, Jo Y, Son J, Choi J. Aptamer-conjugated live human immune cell based biosensors for the accurate detection of C-reactive protein. Sci Rep. 2016;6:34778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fakanya W, Tothill I. Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. Biosensors. 2014;4:340–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. WHO. World Health Organization: global report on diabetes. 2016.

  44. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;1993:977–86.

    Google Scholar 

  45. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  PubMed  CAS  Google Scholar 

  46. Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45.

    Article  PubMed  CAS  Google Scholar 

  47. Matthews DR, Holman RR, Bown E, Steemson J, Watson A, Hughes S, et al. Pen-sized digital 30-second blood glucose meter. Lancet. 1987;1:778.

    Article  PubMed  CAS  Google Scholar 

  48. Murata GH, Shah JH, Hoffman RM, Wendel CS, Adam KD, Solvas PA, et al. Intensified blood glucose monitoring improves glycemic control in stable, insulin-treated veterans with type 2 diabetes. Diabetes Care. 2003;26:1759–63.

    Article  PubMed  Google Scholar 

  49. Poolsup N, Suksomboon N, Rattanasookchit S. Meta-analysis of the benefits of self-monitoring of blood glucose on glycemic control in type 2 diabetes patients: an update. Diabetes Technol Ther. 2009;11:775–84.

    Article  PubMed  CAS  Google Scholar 

  50. Wang J. Electrochemical glucose biosensors. Chem Rev. 2008;108:814–25.

    Article  PubMed  CAS  Google Scholar 

  51. Liakat S, Bors KA, Xu L, Woods CM, Doyle J, Gmachl CF. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomedical Optics Express. 2014;5:2397–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Soni A, Jha SK. Smartphone based non-invasive salivary glucose biosensor. Anal Chim Acta. 2017;996:54–63.

    Article  PubMed  CAS  Google Scholar 

  53. Shichiri M, Yamasaki Y, Kawamori R, Hakui N, Abe H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;320:1129–31.

    Article  Google Scholar 

  54. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;2008:1464–76.

    Google Scholar 

  55. Kowalski A. Pathway to artificial pancreas systems revisited: moving downstream. Diabetes Care. 2015;38:1036–43.

    Article  PubMed  Google Scholar 

  56. Cobelli C, Renard E, Kovatchev B. Artificial pancreas: past, present, future. Diabetes. 2011;60:2672–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Anderson SM, Raghinaru D, Pinsker JE, Boscari F, Renard E, Buckingham BA, et al. Multinational home use of closed-loop control is safe and effective. Diabetes Care. 2016;39:1143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martin P. Wound healing—aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  PubMed  CAS  Google Scholar 

  59. Werdin F, Tenenhaus M, Rennekampff H-O. Chronic wound care. Lancet. 2008;372:1860–2.

    Article  PubMed  Google Scholar 

  60. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163:257–68.

    Article  PubMed  CAS  Google Scholar 

  61. Guinovart T, Valdés-Ramírez G, Windmiller JR, Andrade FJ, Wang J. Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis. 2014;26:1345–53.

    Article  CAS  Google Scholar 

  62. Tamayol A, Akbari M, Zilberman Y, Comotto M, Lesha E, Serex L, et al. Flexible pH-sensing hydrogel fibers for epidermal applications. Adv Healthc Mater. 2016;5:711–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Murković Steinberg I. Smart bandage with wireless connectivity for optical monitoring of pH. Sensors Actuators B Chem. 2017;246:455–60.

    Article  CAS  Google Scholar 

  64. • Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR. Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans Biomed Circuits Syst. 2015;9:670–7. This work reports the application of three-dimensional printing to fabricate a smart wound healing dressing platform for real-time data acquisition of oxygen concentration.

    Article  PubMed  Google Scholar 

  65. Mostafalu P, Amugothu S, Tamayol A, Bagherifard S, Akbari M, Dokmeci MR, et al. Smart flexible wound dressing with wireless drug delivery. IEEE; 2015. pp. 1–4.

  66. Bohunicky B, Mousa SA. Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl. 2010;4:1–10.

    PubMed  PubMed Central  Google Scholar 

  67. Wang H, Wang X, Wang J, Fu W, Yao C. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci Rep. 2016;6:33140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Mittal S, Kaur H, Gautam N, Mantha AK. Biosensors for breast cancer diagnosis: a review of bioreceptors, biotransducers and signal amplification strategies. Biosens Bioelectron. 2017;88:217–31.

    Article  PubMed  CAS  Google Scholar 

  69. DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014;64:52–62.

    Article  PubMed  Google Scholar 

  70. •• Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A. DNA generated electric current biosensor. Anal Chem. 2017;89:2547–52. In this study, human epidermal growth factor receptor 2 was detected using a novel approach in DNA and molecular electronics.

    Article  PubMed  CAS  Google Scholar 

  71. Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A. Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem. 2017;89:10264–9.

    Article  PubMed  CAS  Google Scholar 

  72. Cui M, Wang Y, Wang H, Wu Y, Luo X. A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer. Sensors Actuators B Chem. 2017;244:742–9.

    Article  CAS  Google Scholar 

  73. Chang C-C, Chiu N-F, Lin DS, Chu-Su Y, Liang Y-H, Lin C-W. High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem. 2010;82:1207–12.

    Article  PubMed  CAS  Google Scholar 

  74. Cardoso AR, Moreira FTC, Fernandes R, Sales MGF. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron. 2016;80:621–30.

    Article  PubMed  CAS  Google Scholar 

  75. Tothill IE. Biosensors for cancer markers diagnosis. Semin Cell Dev Biol. 2009;20:55–62.

    Article  PubMed  CAS  Google Scholar 

  76. Thapa A, Soares AC, Soares JC, Awan IT, Volpati D, Melendez ME, et al. Carbon nanotube matrix for highly sensitive biosensors to detect pancreatic cancer biomarker CA19-9. ACS Appl Mater Interfaces. 2017;9:25878–86.

    Article  PubMed  CAS  Google Scholar 

  77. Restoring touch. Nat Mater. 2016;15:919–9.

  78. Xu B, Akhtar A, Liu Y, Chen H, Yeo W-H, Park SI, et al. An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv Mater. 2015;28:4462–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Merrill DR, Lockhart J, Troyk PR, Weir RF, Hankin DL. Development of an implantable myoelectric sensor for advanced prosthesis control. Artif Organs. 2011;35:249–52.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mannsfeld SCB, Tee BC-K, Stoltenberg RM, Chen CVH-H, Barman S, Muir BVO, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9:859–64.

    Article  PubMed  CAS  Google Scholar 

  81. Boero C, Casulli MA, Olivo J, Foglia L, Orso E, Mazza M, et al. Design, development, and validation of an in-situ biosensor array for metabolite monitoring of cell cultures. Biosens Bioelectron. 2014;61:251–9.

    Article  PubMed  CAS  Google Scholar 

  82. • Rogers JK, Church GM. Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci. 2016;113:2388–93. This paper presents an innovative biosensing system used for evaluation of metabolic products.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Shafiee A, Atala A. Tissue engineering: toward a new era of medicine. Annu Rev Med. 2017;68:29–40.

    Article  PubMed  CAS  Google Scholar 

  84. Shin SR, Zhang YS, Kim D-J, Manbohi A, Avci H, Silvestri A, et al. Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem. 2016;88:10019–27.

    Article  CAS  Google Scholar 

  85. Samad WZ, Salleh MM, Shafiee A, Yarmo MA. Preparation nanostructure thin films of fluorine doped tin oxide by inkjet printing technique. AIP Conference Proceedings 2010. pp. 83–6.

  86. Samad WZ, Salleh MM, Shafiee A, Yarmo MA. Structural, optical and electrical properties of fluorine doped tin oxide thin films deposited using inkjet printing technique. Sains Malaysiana. Universiti Kebangsaan Malaysia; 2011;40:251–7.

  87. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2016;16:303–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Samad WZ, Salleh MM, Shafiee A. Transparent conducting thin films of fluoro doped tin oxide (FTO) deposited using inkjet printing technique. IEEE International Conference on Semiconductor Electrionics, ICSE 2010. 2010.

  89. Samad WZ, Salleh MM, Shafiee A, Yarmo MA. Transparent conductive electrode of fluorine doped tin oxide prepared by inkjet printing technique. Mater Sci Forum. 2010;663-665:694–7.

    Article  CAS  Google Scholar 

  90. Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci. 2017;114:E2293–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesisin a mouse model. J Clin Invest. 2004;114:330–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Pecora AL. Progress in clinical application of use of progenitor cells expanded with hematopoietic growth factors. Curr Opin Hematol. 2001;8:142–8.

    Article  PubMed  CAS  Google Scholar 

  93. Lee J-H, Lee T, Choi J-W. Nano-biosensor for monitoring the neural differentiation of stem cells. Nano. 2016;6:224.

    Google Scholar 

  94. Kim T-H, Yea C-H, Chueng S-TD, Yin PT-T, Conley B, Dardir K, et al. Large-scale nanoelectrode arrays to monitor the dopaminergic differentiation of human neural stem cells. Adv Mater. 2015;27:6356–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shafiee A, Atala A. Printing technologies for medical applications. Trends Mol Med. 2016;22(3):254–65.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Shafiee.

Ethics declarations

Conflict of Interest

Ashkan Shafiee, Elham Ghadiri, Jareer Kassis, Nima Pourhabibi Zarandi, and Anthony Atala declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Artificial Tissues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, A., Ghadiri, E., Kassis, J. et al. Biosensing Technologies for Medical Applications, Manufacturing, and Regenerative Medicine. Curr Stem Cell Rep 4, 105–115 (2018). https://doi.org/10.1007/s40778-018-0123-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-018-0123-y

Keywords

Navigation