Skip to main content

Advertisement

Log in

Current Controversies and Advances in Non-invasive Respiratory Support for Preterm Infants

  • Pediatric Neonatology (T Thorkelsson, Section Editor)
  • Published:
Current Treatment Options in Pediatrics Aims and scope Submit manuscript

Abstract

Purpose of Review

Advances in neonatal respiratory support have resulted in increasing survival of infants at the limits of viability. This has resulted in substantial change in the typical patient population in neonatal intensive care units as well as availability of newer respiratory strategies. This review aims to highlight the evidence base behind some of these advancements and resultant controversies.

Recent Findings

Non-invasive respiratory support has been shown to improve short-term respiratory outcome but the impact on long-term respiratory health needs more evidence. There is no clear evidence that one mode of continuous positive airway pressure delivery is superior to others. Newer methods of non-invasive respiratory support are increasingly being used without clear evidence of benefit on meaningful clinical outcomes. There is increasing evidence for less invasive methods of surfactant administration as viable alternatives to conventional methods.

Summary

While innovations in neonatal respiratory support have contributed to improved survival and reducing lung injury in preterm infants, some fundamental questions for optimizing respiratory care still remain. In addition, these have brought new challenges such as redefining respiratory morbidities to better reflect contemporary clinical practice, or finding a balance between evidence-based medicine and incorporation of newer practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68.

    PubMed  Google Scholar 

  2. Jobe AH. Mechanisms of lung injury and bronchopulmonary dysplasia. Am J Perinatol. 2016;33(11):1076–8.

    PubMed  Google Scholar 

  3. Shahzad T, et al. Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr. 2016;3(1):23.

    PubMed  PubMed Central  Google Scholar 

  4. Respiratory support in preterm infants at birth. Pediatrics. 2014;133(1):171–4.

    Google Scholar 

  5. Sweet DG et al., European consensus guidelines on the management of respiratory distress syndrome—2019 update. Neonatology, 2019. 115(4): 432–450. This article provides consensus guidelines on management of RDS and surfactant administration. This is a valuable resource for recent evidence base for respiratory support in preterm infants.

  6. Subramaniam P, Ho JJ, Davis PG. Prophylactic or very early initiation of continuous positive airway pressure (CPAP) for preterm infants. Cochrane Database Syst Rev. 2021;10(10):Cd001243.

    PubMed  Google Scholar 

  7. Fischer HS, Buhrer C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: a meta-analysis. Pediatrics. 2013;132(5):e1351–60.

    PubMed  Google Scholar 

  8. Doyle LW et al., Ventilation in extremely preterm infants and respiratory function at 8 years. N Engl J Med, 2017. 377(4): 329–337. This is one of the most recent studies evaluating long-term pulmonary function in extremely preterm infants and correlating them with changes in respiratory care practices over period of time.

  9. Bancalari E, Jain D. Ventilation in preterm infants and lung function at 8 years. N Engl J Med. 2017;377(16):1599–600.

    PubMed  Google Scholar 

  10. Dargaville PA, Gerber A, Johansson S, De Paoli AG, Kamlin CO, Orsini F, Davis PG; Australian and New Zealand Neonatal Network. Incidence and outcome of CPAP Failure in preterm infants. Pediatrics. 2016;138(1):e20153985. https://doi.org/10.1542/peds.2015-3985.

  11. Wai KC, et al. Early cumulative supplemental oxygen predicts bronchopulmonary dysplasia in high risk extremely low gestational age newborns. J Pediatr. 2016;177:97-102.e2.

    PubMed  PubMed Central  Google Scholar 

  12. Mayer CA, Ganguly A, Mayer A, Pabelick CM, Prakash YS, Hascall VC, Midura RJ, Cali V, Flask CA, Erokwu BO, Martin RJ, MacFarlane PM. CPAP-induced airway hyper-reactivity in mice is modulated by hyaluronan synthase-3. Pediatr Res. 2021. https://doi.org/10.1038/s41390-021-01695-0.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wright CJ et al., Preventing continuous positive airway pressure failure: evidence-based and physiologically sound practices from delivery room to the neonatal intensive care unit. Clin Perinatol, 2018. 45(2): p. 257–271. This review article outlines the reasons for failure of CPAP and provides some evidence-based strategies for reducing the risk of CPAP failure.

  14. Pillow JJ, et al. Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am J Respir Crit Care Med. 2007;176(1):63–9.

    PubMed  PubMed Central  Google Scholar 

  15. Lee KS, et al. A comparison of underwater bubble continuous positive airway pressure with ventilator-derived continuous positive airway pressure in premature neonates ready for extubation. Biol Neonate. 1998;73(2):69–75.

    CAS  PubMed  Google Scholar 

  16. Liptsen E, et al. Work of breathing during nasal continuous positive airway pressure in preterm infants: a comparison of bubble vs variable-flow devices. J Perinatol. 2005;25(7):453–8.

    PubMed  Google Scholar 

  17. Avery ME, et al. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics. 1987;79(1):26–30.

    CAS  PubMed  Google Scholar 

  18. Nasef N, Rashed HM, Aly H. Practical aspects on the use of non-invasive respiratory support in preterm infants. Int J Pediatr Adolesc Med. 2020;7(1):19–25.

    PubMed  PubMed Central  Google Scholar 

  19. Ambalavanan N, et al. Intercenter differences in bronchopulmonary dysplasia or death among very low birth weight infants. Pediatrics. 2011;127(1):e106–16.

    PubMed  Google Scholar 

  20. Levesque BM, et al. Impact of implementing 5 potentially better respiratory practices on neonatal outcomes and costs. Pediatrics. 2011;128(1):e218–26.

    PubMed  PubMed Central  Google Scholar 

  21. Aly H, Mohamed MA. An experience with a bubble CPAP bundle: is chronic lung disease preventable? Pediatr Res. 2020;88(3):444–50.

    PubMed  PubMed Central  Google Scholar 

  22. Sharma D, et al. Comparison of delivered distending pressures in the oropharynx in preterm infant on bubble CPAP and on three different nasal interfaces. Pediatr Pulmonol. 2020;55(7):1631–9.

    PubMed  Google Scholar 

  23. Singh N, McNally MJ, Darnall RA. Does the RAM cannula provide continuous positive airway pressure as effectively as the Hudson prongs in preterm neonates? Am J Perinatol. 2019;36(8):849–54.

    PubMed  Google Scholar 

  24. Napolitano N, et al. Performance evaluation of nasal prong interface for CPAP delivery on a critical care ventilator: a bench experiment. Respir Care. 2021;66(10):1514–20.

    PubMed  Google Scholar 

  25. Green EA, et al. Assessment of resistance of nasal continuous positive airway pressure interfaces. Arch Dis Child Fetal Neonatal Ed. 2019;104(5):F535-f539.

    PubMed  Google Scholar 

  26. Hochwald O, et al. Cannula with long and narrow tubing vs short binasal prongs for noninvasive ventilation in preterm infants: noninferiority randomized clinical trial. JAMA Pediatr. 2021;175(1):36–43.

    PubMed  Google Scholar 

  27. Claassen CC, et al. Use of the RAM cannula with early bubble continuous positive airway pressure requires higher pressures: clinical and in vitro evaluations. Am J Perinatol. 2021;38(11):1167–73.

    PubMed  Google Scholar 

  28. King BC, et al. Mask versus prongs for nasal continuous positive airway pressure in preterm infants: a systematic review and meta-analysis. Neonatology. 2019;116(2):100–14.

    PubMed  Google Scholar 

  29. Bashir T, et al. ‘Nasal mask’ in comparison with ‘nasal prongs’ or ‘rotation of nasal mask with nasal prongs’ reduce the incidence of nasal injury in preterm neonates supported on nasal continuous positive airway pressure (nCPAP): a randomized controlled trial. PLoS One. 2019;14(1):e0211476.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Beltempo M, et al. Respiratory management of extremely preterm infants: an international survey. Neonatology. 2018;114(1):28–36.

    PubMed  Google Scholar 

  31. Murki S, et al. Initiating nasal continuous positive airway pressure in preterm neonates at 5 cm as against 7 cm did not decrease the need for mechanical ventilation. Acta Paediatr. 2016;105(8):e345–51.

    PubMed  Google Scholar 

  32. Morley CJ, et al. Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med. 2008;358(7):700–8.

    CAS  PubMed  Google Scholar 

  33. Buzzella B, et al. A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants. J Pediatr. 2014;164(1):46–51.

    PubMed  Google Scholar 

  34. Bamat N, et al. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2021;11(11):Cd012778.

    PubMed  Google Scholar 

  35. May LA, et al. A novel approach using volumetric dynamic airway computed tomography to determine positive end-expiratory pressure (PEEP) settings to maintain airway patency in ventilated infants with bronchopulmonary dysplasia. Pediatr Radiol. 2019;49(10):1276–84.

    PubMed  Google Scholar 

  36. Thomson J, et al. Regional ventilation characteristics during non-invasive respiratory support in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2021;106(4):370–5.

    PubMed  Google Scholar 

  37. Tingay DG, et al. Effectiveness of individualized lung recruitment strategies at birth: an experimental study in preterm lambs. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L32–41.

    PubMed  Google Scholar 

  38. De Luca D et al., Personalized medicine for the management of RDS in preterm neonates. Neonatology, 2021. 118(2): p. 127–138. This review article provides state-of-the-art review of advances in diagnosis of severity of RDS and provides rationale for individualizing the management of RDS.

  39. Owen LS, Morley CJ, Davis PG. Pressure variation during ventilator generated nasal intermittent positive pressure ventilation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2010;95(5):F359–64.

    CAS  PubMed  Google Scholar 

  40. Sabsabi B, Harrison A, Banfield L, Mukerji A. Nasal intermittent positive pressure ventilation versus continuous positive airway pressure and apnea of prematurity: a systematic review and meta-analysis. Am J Perinatol. 2021. https://doi.org/10.1055/s-0040-1722337.

    Article  PubMed  Google Scholar 

  41. Kirpalani H, et al. A trial comparing noninvasive ventilation strategies in preterm infants. N Engl J Med. 2013;369(7):611–20.

    CAS  PubMed  Google Scholar 

  42. Bhandari V, et al. A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS. J Perinatol. 2007;27(11):697–703.

    CAS  PubMed  Google Scholar 

  43. Ramanathan R, et al. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants <30 weeks’ gestation: a randomized, controlled trial. J Perinatol. 2012;32(5):336–43.

    CAS  PubMed  Google Scholar 

  44. Kugelman A, et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr. 2007;150(5):521–6, 526.e1.

    PubMed  Google Scholar 

  45. Rüegger CM, Owen LS, Davis PG. Nasal intermittent positive pressure ventilation for neonatal respiratory distress syndrome. Clin Perinatol. 2021;48(4):725–44.

    PubMed  Google Scholar 

  46. Owen LS, et al. Effects of non-synchronised nasal intermittent positive pressure ventilation on spontaneous breathing in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2011;96(6):F422–8.

    CAS  PubMed  Google Scholar 

  47. de Waal CG, et al. Patient-ventilator asynchrony in preterm infants on nasal intermittent positive pressure ventilation. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F280-f284.

    PubMed  Google Scholar 

  48. Huang L, et al. Effects of synchronization during noninvasive intermittent mandatory ventilation in preterm infants with respiratory distress syndrome immediately after extubation. Neonatology. 2015;108(2):108–14.

    CAS  PubMed  Google Scholar 

  49. Chang HY, et al. Effects of synchronization during nasal ventilation in clinically stable preterm infants. Pediatr Res. 2011;69(1):84–9.

    PubMed  Google Scholar 

  50. Friedlich P, et al. A randomized trial of nasopharyngeal-synchronized intermittent mandatory ventilation versus nasopharyngeal continuous positive airway pressure in very low birth weight infants after extubation. J Perinatol. 1999;19(6 Pt 1):413–8.

    CAS  PubMed  Google Scholar 

  51. Stern DJ, Weisner MD, Courtney SE. Synchronized neonatal non-invasive ventilation-a pilot study: the graseby capsule with bi-level NCPAP. Pediatr Pulmonol. 2014;49(7):659–64.

    PubMed  Google Scholar 

  52. Verbrugghe W, Jorens PG. Neurally adjusted ventilatory assist: a ventilation tool or a ventilation toy? Respir Care. 2011;56(3):327–35.

    PubMed  Google Scholar 

  53. Lee BK, et al. Comparison of NIV-NAVA and NCPAP in facilitating extubation for very preterm infants. BMC Pediatr. 2019;19(1):298.

    PubMed  PubMed Central  Google Scholar 

  54. Makker K, et al. Comparison of extubation success using noninvasive positive pressure ventilation (NIPPV) versus noninvasive neurally adjusted ventilatory assist (NI-NAVA). J Perinatol. 2020;40(8):1202–10.

    PubMed  PubMed Central  Google Scholar 

  55. Schäfer C, et al. Carbon dioxide diffusion coefficient in noninvasive high-frequency oscillatory ventilation. Pediatr Pulmonol. 2019;54(6):759–64.

    PubMed  Google Scholar 

  56. De Luca D, et al. Effect of amplitude and inspiratory time in a bench model of non-invasive HFOV through nasal prongs. Pediatr Pulmonol. 2012;47(10):1012–8.

    PubMed  Google Scholar 

  57. Null DM, et al. High-frequency nasal ventilation for 21 d maintains gas exchange with lower respiratory pressures and promotes alveolarization in preterm lambs. Pediatr Res. 2014;75(4):507–16.

    PubMed  Google Scholar 

  58. Bottino R, et al. Nasal high-frequency oscillatory ventilation and CO2 removal: a randomized controlled crossover trial. Pediatr Pulmonol. 2018;53(9):1245–51.

    PubMed  Google Scholar 

  59. Chen L, et al. Nasal high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome and ARDS after extubation: a randomized controlled trial. Chest. 2019;155(4):740–8.

    PubMed  Google Scholar 

  60. Rüegger CM, et al. The effect of noninvasive high-frequency oscillatory ventilation on desaturations and bradycardia in very preterm infants: a randomized crossover trial. J Pediatr. 2018;201:269-273.e2.

    PubMed  Google Scholar 

  61. De Luca D, and Centorrino R, Nasal high-frequency ventilation. Clin Perinatol, 2021. 48(4): 761–782. This is a most up to date review on nasal high frequency ventilation summarizing both physiological and current clinical evidence. The article also suggests some ventilatory parameters and clinical parameters for clinical use of nasal high frequency ventilation.

  62. Zhang S, Garbutt V, McBride JT. Strain-induced growth of the immature lung. J Appl Physiol (1985). 1996;81(4):1471–6.

    CAS  Google Scholar 

  63. Wirtz HR, Dobbs LG. The effects of mechanical forces on lung functions. Respir Physiol. 2000;119(1):1–17.

    CAS  PubMed  Google Scholar 

  64. Lam R et al., The effect of extended continuous positive airway pressure on changes in lung volumes in stable premature infants: a randomized controlled trial. J Pediatr, 2020. 217: 66–72.e1. This is the only clincial study evaluating the effect of extending CPAP on pulmonary function, provinding some clinical evidence that extended CPAP may improve pulmonary function.

  65. Seger N, Soll R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst Rev. 2009;2:007836.

    Google Scholar 

  66. Isayama T, Chai-Adisaksopha C, McDonald SD. Noninvasive ventilation with vs without early surfactant to prevent chronic lung disease in preterm infants: a systematic review and meta-analysis. JAMA Pediatr. 2015;169(8):731–9.

    PubMed  Google Scholar 

  67. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11(11):Cd001456.

    PubMed  Google Scholar 

  68. Raschetti R, et al. Estimation of early life endogenous surfactant pool and CPAP failure in preterm neonates with RDS. Respir Res. 2019;20(1):75.

    PubMed  PubMed Central  Google Scholar 

  69. Harms K, et al. Importance of pre- and perinatal risk factors in respiratory distress syndrome of premature infants A logical regression analysis of 1100 cases. Z Geburtshilfe Neonatol. 1997;201(6):258–62.

    CAS  PubMed  Google Scholar 

  70. Fuchs H, et al. Predictors of early nasal CPAP failure and effects of various intubation criteria on the rate of mechanical ventilation in preterm infants of <29 weeks gestational age. Arch Dis Child Fetal Neonatal Ed. 2011;96(5):F343–7.

    CAS  PubMed  Google Scholar 

  71. Gulczyńska E, et al. Fraction of inspired oxygen as a predictor of CPAP failure in preterm infants with respiratory distress syndrome: a prospective multicenter study. Neonatology. 2019;116(2):171–8.

    PubMed  Google Scholar 

  72. Dargaville PA, et al. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology. 2013;104(1):8–14.

    CAS  PubMed  Google Scholar 

  73. Ng EH, Shah V. Guidelines for surfactant replacement therapy in neonates. Paediatr Child Health. 2021;26(1):35–41.

    PubMed  PubMed Central  Google Scholar 

  74. Tagliaferro T, et al. Early radiologic evidence of severe respiratory distress syndrome as a predictor of nasal continuous positive airway pressure failure in extremely low birth weight newborns. J Perinatol. 2015;35(2):99–103.

    CAS  PubMed  Google Scholar 

  75. Aldecoa-Bilbao V, et al. Lung ultrasound for early surfactant treatment: development and validation of a predictive model. Pediatr Pulmonol. 2021;56(2):433–41.

    PubMed  Google Scholar 

  76. Vardar G, Karadag N, Karatekin G. The role of lung ultrasound as an early diagnostic tool for need of surfactant therapy in preterm infants with respiratory distress syndrome. Am J Perinatol. 2021;38(14):1547–56.

    PubMed  Google Scholar 

  77. De Martino L, Yousef N, Ben-Ammar R, Raimondi F, Shankar-Aguilera S, De Luca D. Lung Ultrasound Score Predicts Surfactant Need in Extremely Preterm Neonates. Pediatrics. 2018;142(3):e20180463. https://doi.org/10.1542/peds.2018-0463.

  78. Badurdeen S, et al. Lung ultrasound during newborn resuscitation predicts the need for surfactant therapy in very- and extremely preterm infants. Resuscitation. 2021;162:227–35.

    PubMed  Google Scholar 

  79. Kribs A, et al. Nonintubated surfactant application vs conventional therapy in extremely preterm infants: a randomized clinical trial. JAMA Pediatr. 2015;169(8):723–30.

    PubMed  Google Scholar 

  80. Pinheiro JM, Santana-Rivas Q, Pezzano C. Randomized trial of laryngeal mask airway versus endotracheal intubation for surfactant delivery. J Perinatol. 2016;36(3):196–201.

    CAS  PubMed  Google Scholar 

  81. Ten centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. Ten Centre Study Group. Br Med J (Clin Res Ed). 1987;294(6578):991–6. https://doi.org/10.1136/bmj.294.6578.991.

  82. Jardine L, et al. Trial of aerosolised surfactant for preterm infants with respiratory distress syndrome. Arch Dis Child Fetal Neonatal Ed. 2022;107(1):51–5.

    PubMed  Google Scholar 

  83. Niemarkt HJ, et al. Effects of less-invasive surfactant administration on oxygenation, pulmonary surfactant distribution, and lung compliance in spontaneously breathing preterm lambs. Pediatr Res. 2014;76(2):166–70.

    CAS  PubMed  Google Scholar 

  84. van der Burg PS, et al. Effect of minimally invasive surfactant therapy on lung volume and ventilation in preterm infants. J Pediatr. 2016;170:67–72.

    PubMed  Google Scholar 

  85. Ricci F, et al. Surfactant lung delivery with LISA and InSurE in adult rabbits with respiratory distress. Pediatr Res. 2021;90(3):576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bellos I, et al. Comparative efficacy of methods for surfactant administration: a network meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2021;106(5):474–87.

    PubMed  Google Scholar 

  87. De Luca D, Shankar-Aguilera S, and Bancalari E, LISA/MIST: complex clinical problems almost never have easy solutions. Semin Fetal Neonatal Med, 2021. 26(2): 101230. This is one of the recent reviews on less invasive surfactant administration providing physiological rationale and critically reviews the clinical evidence.

  88. Dargaville PA et al., Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST—a randomized clinical trial. Jama, 2021. 326(24): 2478–2487. A recent large, multicentric randomized controlled trial comparing less invasive surfactant to sham treatment in extremely preterm infants. This is one of the largest trials for answering the question whether less invasive surfactant improves clinical outcomes when compared to continued CPAP.

  89. Fernandez C, et al. Less invasive surfactant administration in Spain: a survey regarding its practice, the target population, and premedication use. Am J Perinatol. 2020;37(3):277–80.

    PubMed  Google Scholar 

  90. Yoder BA, et al. Heated, humidified high-flow nasal cannula versus nasal CPAP for respiratory support in neonates. Pediatrics. 2013;131(5):e1482–90.

    PubMed  Google Scholar 

  91. Osman M, Elsharkawy A, Abdel-Hady H. Assessment of pain during application of nasal-continuous positive airway pressure and heated, humidified high-flow nasal cannulae in preterm infants. J Perinatol. 2015;35(4):263–7.

    CAS  PubMed  Google Scholar 

  92. Roberts CT, et al. Nursing perceptions of high-flow nasal cannulae treatment for very preterm infants. J Paediatr Child Health. 2014;50(10):806–10.

    PubMed  Google Scholar 

  93. Dysart K, et al. Research in high flow therapy: mechanisms of action. Respir Med. 2009;103(10):1400–5.

    PubMed  Google Scholar 

  94. Ojha S, Gridley E, Dorling J. Use of heated humidified high-flow nasal cannula oxygen in neonates: a UK wide survey. Acta Paediatr. 2013;102(3):249–53.

    PubMed  Google Scholar 

  95. Iyer NP, Mhanna MJ. Association between high-flow nasal cannula and end-expiratory esophageal pressures in premature infants. Respir Care. 2016;61(3):285–90.

    PubMed  Google Scholar 

  96. Liew Z et al., Physiological effects of high-flow nasal cannula therapy in preterm infants. Arch Dis Child Fetal Neonatal Ed, 2020. 105(1): p. 87–93. This is one of the few randomized cross over studies evaluating the effect of diffferent high flow nasal cannula flows and CPAP on delievered pressure and respiratory function. Authors showed significant variability in delivered pressures at higher flow and in smaller infants.

  97. Bruet S, Butin M, Dutheil F. Systematic review of high-flow nasal cannula versus continuous positive airway pressure for primary support in preterm infants. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2022;107(1):56–9.

    PubMed  Google Scholar 

  98. Uchiyama A, Okazaki K, Kondo M, Oka S, Motojima Y, Namba F, Nagano N, Yoshikawa K, Kayama K, Kobayashi A, Soeno Y, Numata O, Suenaga H, Imai K, Maruyama H, Fujinaga H, Furuya H, Ito Y, Non-invasive Procedure for Premature Neonates (NIPPN) Study Group. Randomized Controlled Trial of High-Flow Nasal Cannula in Preterm Infants After Extubation. Pediatrics. 2020;146(6):e20201101. https://doi.org/10.1542/peds.2020-1101.

  99. Hodgson KA, Manley BJ, Davis PG. Is nasal high flow inferior to continuous positive airway pressure for neonates? Clin Perinatol. 2019;46(3):537–51.

    PubMed  Google Scholar 

  100. Abdel-Hady H, Shouman B, Aly H. Early weaning from CPAP to high flow nasal cannula in preterm infants is associated with prolonged oxygen requirement: a randomized controlled trial. Early Hum Dev. 2011;87(3):205–8.

    PubMed  Google Scholar 

  101. Hoffman SB, et al. Impact of high-flow nasal cannula use on neonatal respiratory support patterns and length of stay. Respir Care. 2016;61(10):1299–304.

    PubMed  Google Scholar 

  102. Taha DK, et al. High flow nasal cannula use is associated with increased morbidity and length of hospitalization in extremely low birth weight infants. J Pediatr. 2016;173:50-55.e1.

    PubMed  PubMed Central  Google Scholar 

  103. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    CAS  PubMed  Google Scholar 

  104. Abman SH, et al. Interdisciplinary care of children with severe bronchopulmonary dysplasia. J Pediatr. 2017;181:12-28.e1.

    PubMed  Google Scholar 

  105. Higgins RD et al., Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr, 2018. 197: 300–308. This summary statement from NIH workshop on BPD is the most recent article summarizing the pathophysiology of BPD and proposed a new definition of BPD incorporating newer modes of respiratory support.

  106. Kim F, et al. Revisiting the definition of bronchopulmonary dysplasia in premature infants at a single center quaternary neonatal intensive care unit. J Perinatol. 2021;41(4):756–63.

    PubMed  Google Scholar 

  107. Wang CH, et al. A comparison of the clinical diagnosis and outcome in preterm infants with bronchopulmonary dysplasia under two different diagnostic criteria. Zhonghua Er Ke Za Zhi. 2020;58(5):381–6.

    CAS  PubMed  Google Scholar 

  108. Jensen EA, Dysart K, Gantz MG, McDonald S, Bamat NA, Keszler M, Kirpalani H, Laughon MM, Poindexter BB, Duncan AF, Yoder BA, Eichenwald EC, DeMauro SB. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019;200(6):751–759. https://doi.org/10.1164/rccm.201812-2348OC.

  109. Stoecklin B, Simpson SJ, Pillow JJ. Bronchopulmonary dysplasia: rationale for a pathophysiological rather than treatment based approach to diagnosis. Paediatr Respir Rev. 2019;32:91–7.

    PubMed  Google Scholar 

  110. Bancalari E, Jain D. Bronchopulmonary dysplasia: can we agree on a definition? Am J Perinatol. 2018;35(6):537–40.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Jain MD.

Ethics declarations

Conflict of interest

Deepak Jain declares that he has no conflict of interest. Manan Shah declares that he has no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Neonatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, D., Shah, M. Current Controversies and Advances in Non-invasive Respiratory Support for Preterm Infants. Curr Treat Options Peds 8, 262–277 (2022). https://doi.org/10.1007/s40746-022-00239-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40746-022-00239-w

Keywords

Navigation