Skip to main content
Log in

Insight into the Corrosion Inhibition of Dibenzylidene Acetone for Carbon Steel in a Sulfuric Acid Environment: Synthesis, Experimental, and Theoretical Studies

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In this study, a thorough evaluation was conducted for the corrosion inhibition potential of (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one compound, commonly referred to as dibenzylidene acetone (DBA) on carbon steel (CS) immersed in a 0.5 M H2SO4 solution through electrochemical analysis and theoretical calculations. The findings revealed that DBA functions as a remarkably potent agent against corrosion, displaying a notable decrease in the steel corrosion rate with remarkable inhibition efficiency (89%) at a concentration of 4.10–3 M. Additionally, the inhibition mechanism is elucidated through detailed electrochemical analysis, highlighting the adsorption of the DBA compound onto the metal surface and subsequent formation of a protective barrier, resulted through its physical interactions while following the Langmuir model. Surface characterizations of the metallic surface through SEM–EDX instrument were conducted for several samples in different corrosive conditions to explore the severity of the sulfuric medium, and the effectiveness of the DBA compound in the same setting. Furthermore, Quantum chemical calculations through Molecular Dynamics simulations (MDs) showcased a solid alignment between the theoretical assessments and the empirical findings. These findings indicate that DBA holds a potent corrosion inhibition effect for carbon steel in the aggressive sulfuric medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1:
Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

Data Availability

The manuscript contains third party material and obtained permissions are available on request by the Publisher.

References

  1. Loto RT, Loto CA, Oyedeko F (2021) Comparative data on the protection performance of celery, pomegranate and green tea distillates on mild steel in weak H2SO4 solution. Mater Today 49:1920–1925. https://doi.org/10.1016/j.matpr.2021.08.085

    Article  CAS  Google Scholar 

  2. Verma DK, Sahu R, Berdimurodov E et al (2023) Isatin as a new core in the development of corrosion inhibitors: A comprehensive review. J Mol Struct 1294:136313. https://doi.org/10.1016/j.molstruc.2023.136313

    Article  CAS  Google Scholar 

  3. Tolulope Loto R (2023) Electrochemical data on the corrosion inhibition performance of admixed Citrus paradisi and Zingiber officinale oil extracts in 0.5 M H2SO4 solution. Mater Today 80:1519–1524. https://doi.org/10.1016/j.matpr.2023.01.288

    Article  CAS  Google Scholar 

  4. Khoshsang H, Ghaffarinejad A (2022) Sunflower petals extract as a green, eco-friendly and effective corrosion bioinhibitor for carbon steel in 1M HCl solution. Chem Data Collections 37:100799. https://doi.org/10.1016/j.cdc.2021.100799

    Article  CAS  Google Scholar 

  5. Xu X, Wei H, Liu M et al (2021) Nitrogen-doped carbon quantum dots for effective corrosion inhibition of Q235 steel in concentrated sulphuric acid solution. Mater Today Commun 29:102872. https://doi.org/10.1016/j.mtcomm.2021.102872

    Article  CAS  Google Scholar 

  6. Mourya P, Singh P, Rastogi RB, Singh MM (2016) Applied Surface Science Inhibition of mild steel corrosion by synergistic effect of halide ion in 0. 5 M H 2 SO 4. Appl Surf Sci 380:141–150. https://doi.org/10.1016/j.rechem.2023.100981

    Article  CAS  ADS  Google Scholar 

  7. Xu C, Li W, Tan B et al (2022) Adsorption of Gardenia jasminoides fruits extract on the interface of Cu/H2SO4 to inhibit Cu corrosion: Experimental and theoretical studies. J Mol Liq 345:116996. https://doi.org/10.1016/j.molliq.2021.116996

    Article  CAS  Google Scholar 

  8. Berdimurodov E, Kholikov A, Akbarov K, et al Fiber Materials. In: Aslam J, Verma C (eds) Design, Fabrication and Applications. De Gruyter, Germany. pp 89–102

  9. Ikeuba AI, Ntibi JE, Okafor PC et al (2023) Kinetic and thermodynamic evaluation of azithromycin as a green corrosion inhibitor during acid cleaning process of mild steel using an experimental and theoretical approach. Results Chem 5:100909. https://doi.org/10.1016/j.rechem.2023.100909

    Article  CAS  Google Scholar 

  10. Fan B, Zhao X, Liu Z et al (2022) Inter-component synergetic corrosion inhibition mechanism of Passiflora edulia Sims shell extract for mild steel in pickling solution : Experimental, DFT and reactive dynamics investigations. Sustain Chem Pharm 29:100821. https://doi.org/10.1016/j.scp.2022.100821

    Article  CAS  Google Scholar 

  11. Lin B, Shao J, Zhao C et al (2023) Passiflora edulis Sims peel extract as a renewable corrosion inhibitor for mild steel in phosphoric acid solution. J Mol Liq 375:121296. https://doi.org/10.1016/j.molliq.2023.121296

    Article  CAS  Google Scholar 

  12. Berdimurodov E, Kholikov A, Akbarov K et al (2023) Grafted Chitosan as Sustainable Corrosion Inhibitors. In: Aslam J, Verma C, Aslam R (eds) Grafted Biopolymers as Corrosion Inhibitors: Safety, Sustainability, and Efficiency. Wiley, Hoboken, pp 285–312

    Chapter  Google Scholar 

  13. Zheng H, Zhang B, Wang X et al (2023) Improved corrosion resistance of carbon steel in soft water with dendritic-polymer corrosion inhibitors. Chem Eng J 452:139043. https://doi.org/10.1016/j.cej.2022.139043

    Article  CAS  Google Scholar 

  14. Berdimurodov E, Berdimuradov K, Eliboev I, et al Corrosion Prevention Nanoscience. In: Tukhlievich BE, Verma C (eds) Nanoengineering Materials and Technologies. De Gruyter, Germany. pp 37–52

  15. Hossain N, Aminul Islam M, Asaduzzaman Chowdhury M (2023) Advances of plant-extracted inhibitors in metal corrosion reduction – Future prospects and challenges. Results Chem 5:100883. https://doi.org/10.1016/j.rechem.2023.100883

    Article  Google Scholar 

  16. Kumar H, Dhanda T (2021) Cyclohexylamine an effective corrosion inhibitor for mild steel in 0.1 N H2SO4: Experimental and theoretical (molecular dynamics simulation and FMO) study. J Mol Liq 327:114847. https://doi.org/10.1016/j.molliq.2020.114847

    Article  CAS  Google Scholar 

  17. Batah A, Chaouiki A, El Mouden OI et al (2022) Almond waste extract as an efficient organic compound for corrosion inhibition of carbon steel (C38) in HCl solution. Sustain Chem Pharm 27:100677. https://doi.org/10.1016/j.scp.2022.100677

    Article  CAS  Google Scholar 

  18. Farag AA, Mohamed EA, Sayed GH, Anwer KE (2021) Experimental/computational assessments of API steel in 6 M H2SO4 medium containing novel pyridine derivatives as corrosion inhibitors. J Mol Liq 330:115705. https://doi.org/10.1016/j.molliq.2021.115705

    Article  CAS  Google Scholar 

  19. Golafshani MG, Tavakoli H, Hosseini SA, Akbari M (2023) MD and DFT computational simulations of Caffeoylquinic derivatives as a bio-corrosion inhibitor from quince extract with experimental investigation of corrosion protection on mild steel in 1M H2SO4. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134701

    Article  Google Scholar 

  20. Kaya F, Solmaz R, Geçibesler İH (2023) Investigation of adsorption, corrosion inhibition, synergistic inhibition effect and stability studies of Rheum ribes leaf extract on mild steel in 1 M HCl solution. J Taiwan Inst Chem Eng. https://doi.org/10.1016/j.jtice.2023.104712

    Article  Google Scholar 

  21. Shahini MH, Ramezanzadeh M, Ramezanzadeh B, Pogonesperma N (2022) Colloids and surfaces A : Physicochemical and Engineering Aspects Effective steel alloy surface protection from HCl attacks using Nepeta Pogonesperma plant stems extract. Colloids Surf, A 634:127990. https://doi.org/10.1016/j.colsurfa.2021.127990

    Article  CAS  Google Scholar 

  22. Mazumder NA, Rano R (2015) An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone. J Ind Eng Chem 29:359–365. https://doi.org/10.1016/j.jiec.2015.04.015

    Article  CAS  Google Scholar 

  23. de Araújo RS, de Alcântara AM, Abegão LMG et al (2020) Second harmonic generation in pyrazoline derivatives of dibenzylideneacetones and chalcone: A combined experimental and theoretical approach. J Photochem Photobiol, A 388:112147. https://doi.org/10.1016/j.jphotochem.2019.112147

    Article  CAS  Google Scholar 

  24. Francisco KR, Monti L, Yang W et al (2023) Structure-activity relationship of dibenzylideneacetone analogs against the neglected disease pathogen, Trypanosoma brucei. Bioorg Med Chem Lett 81:32–33. https://doi.org/10.1016/j.bmcl.2023.129123

    Article  CAS  Google Scholar 

  25. Tan B, Zhang S, Cao X et al (2022) Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J Colloid Interface Sci 609:838–851. https://doi.org/10.1016/j.jcis.2021.11.085

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Tan B, Lan W, Zhang S et al (2022) Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf, A 645:128892. https://doi.org/10.1016/j.colsurfa.2022.128892

    Article  CAS  Google Scholar 

  27. Moustafa AA, Abdelbasir SM, Ashmawy AM et al (2022) A novel ionic liquid for improvement of lead-acid battery performance and protection of its electrodes against corrosion. Mater Chem Phys 292:126764. https://doi.org/10.1016/j.matchemphys.2022.126764

    Article  CAS  Google Scholar 

  28. Moumeni O, Mehri M, Kerkour R et al (2023) Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment. J Taiwan Inst Chem Eng 147:104918. https://doi.org/10.1016/j.jtice.2023.104918

    Article  CAS  Google Scholar 

  29. Mu’azu ND, Haladu SA, AlGhamdi JM, et al. 2023 Inhibition of low carbon steel corrosion by a cationic gemini surfactant in 10wt.% H2SO4 and 15wt.% HCl under static condition and hydrodynamic flow. S Afr J Chem Eng 43 232 244 https://doi.org/10.1016/j.sajce.2022.10.006

  30. Kellal R, Left DB, Wazzan N et al (2023) A new approach for the evaluation of liquid waste generated from plant extraction process for the corrosion mitigation of carbon steel in acidic medium: case of Chrysanthemum Coronarium stems. J Indus Eng Chem 125:370

    Article  CAS  Google Scholar 

  31. El ZA, Benmessaoud CD, Thoume LA, Zertoubi RKM (2023) A comprehensive computational study of N - phenylacetamide derivatives as corrosion inhibitors for copper : insights from DFT and Molecular dymnamics. Journal of Bio- and Tribo-Corrosion. https://doi.org/10.1007/s40735-023-00803-3

    Article  Google Scholar 

  32. Bimoussa A, Koumya Y, Oubella A et al (2022) Synthesis, experimental and theoretical studies of sesquiterpenic thiosemicarbazone and semicarbazone as organic corrosion inhibitors for stainless steel 321 in H2SO4 1M. J Mol Struct 1253:132276. https://doi.org/10.1016/j.molstruc.2021.132276

    Article  CAS  Google Scholar 

  33. Berrissoul A, Ouarhach A, Benhiba F et al (2022) Assessment of corrosion inhibition performance of origanum compactum extract for mild steel in 1 M HCl: Weight loss, electrochemical, SEM/EDX, XPS, DFT and molecular dynamic simulation. Ind Crops Prod 187:115310. https://doi.org/10.1016/j.indcrop.2022.115310

    Article  CAS  Google Scholar 

  34. Doubi M, Erramli H, Touir R et al (2023) A synthesis 3-phenyl-1,2,4-triazole-5-thione as an inhibitor against low carbon steel corrosion in simulated reinforced concrete: Experimental and theoretical studies. Chem Data Collections 44:100989. https://doi.org/10.1016/j.cdc.2023.100989

    Article  CAS  Google Scholar 

  35. Xu C, Jia X, Du J et al (2023) Ultra-strong and solvent-free castor oil-based polyurethane thermally conductive structural adhesives for heat management. Ind Crops Prod 194:116181. https://doi.org/10.1016/j.indcrop.2022.116181

    Article  CAS  Google Scholar 

  36. Bouassiria M, Laabaissi T, Benhiba F et al (2021) Corrosion inhibition effect of 5-(4-methylpiperazine)-methylquinoline-8-ol on carbon steel in molar acid medium. Inorg Chem Commun 123:108366. https://doi.org/10.1016/j.inoche.2020.108366

    Article  CAS  Google Scholar 

  37. About H, El Faydy M, Benhiba F et al (2023) A combined experimental and theoretical approach to the elucidation of the corrosion inhibition property of 5-((4,5-dihydro-4-o-tolyltetrazol-1-yl)methyl)quinolin-8-ol for C22E steel in aggressive environment. Inorg Chem Commun 150:110537. https://doi.org/10.1016/j.inoche.2023.110537

    Article  CAS  Google Scholar 

  38. Jeeja Rani AT, Sreelakshmi T, Joseph A (2022) Effect of the addition of potassium iodide and thiourea on the corrosion inhibition effect of aqueous extract of Ayapana triplinervis towards mild steel in HCl at elevated temperatures-theoretical, electrochemical and surface studies. J Mol Liq 366:120211. https://doi.org/10.1016/j.molliq.2022.120211

    Article  CAS  Google Scholar 

  39. Alahiane M, Oukhrib R, Ait Albrimi Y et al (2023) Corrosion inhibition of SS 316L by organic compounds: Experimental, molecular dynamics, and conceptualization of molecules–surface bonding in H2SO4 solution. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2022.155755

    Article  Google Scholar 

  40. Zhu L, Fan J, Huang H et al (2021) Inhibitive effect of different solvent fractions of bamboo shoots extract on the corrosion of mild steel in 0.5 mol/L H2SO4 solution. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.130852

    Article  PubMed  PubMed Central  Google Scholar 

  41. El Faydy M, About H, Warad I et al (2021) Insight into the corrosion inhibition of new bis-quinolin-8-ols derivatives as highly efficient inhibitors for C35E steel in 0.5 M H2SO4. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.117333

    Article  Google Scholar 

  42. Satpati S, Suhasaria A, Ghosal S et al (2023) Interaction of newly synthesized dipeptide Schiff bases with mild steel surface in aqueous HCl: Experimental and theoretical study on thermodynamics, adsorption and anti-corrosion characteristics. Mater Chem Phys 296:127200. https://doi.org/10.1016/j.matchemphys.2022.127200

    Article  CAS  Google Scholar 

  43. Nesane T, Madala NE, Kabanda MM et al (2023) Lippia javanica leaf extract as an effective anti-corrosion agent against mild steel corrosion in 1M HCl and its characterization by UHPLC/Q-TOF-MS spectroscopy and quantum chemical evaluation of its adsorption process on Fe(110). Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2023.131405

    Article  Google Scholar 

  44. Rezaeivala M, Bozorg M, Rafiee N et al (2023) Corrosion inhibition of Carbon Steel using a new morpholine-based ligand during acid pickling : Experimental and theoretical studies. Inorg Chem Commun 148:110323. https://doi.org/10.1016/j.inoche.2022.110323

    Article  CAS  Google Scholar 

  45. Kaya F, Solmaz R, Halil Geçibesler İ (2023) The use of methanol extract of Rheum Ribes (Işgın) flower as a natural and promising corrosion inhibitor for mild steel protection in 1 M HCl solution. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2023.02.013

    Article  Google Scholar 

  46. Wang H, Deng S, Du G, Li X (2023) Synergistic mixture of Eupatorium adenophora spreng leaves extract and KI as a novel green inhibitor for steel corrosion in 5.0 M H3PO4. J Market Res 23:5082–5104. https://doi.org/10.1016/j.jmrt.2023.02.160

    Article  CAS  Google Scholar 

  47. Berdimurodov E, Eliboyev I, Berdimuradov K, et al (2023) Chapter 3 - Electrochemical impedance (EIS) and noise analyses for corrosion measurements. In: Aslam J, Verma C, Mustansar Hussain CBT-E and AT for SCM (eds). Elsevier, pp 39–58

  48. Abeng FE, Ita BI, Anadebe VC et al (2023) Multidimensional insight into the corrosion mitigation of clonazepam drug molecule on mild steel in chloride environment: Empirical and computer simulation explorations. Results Eng 17:100924. https://doi.org/10.1016/j.rineng.2023.100924

    Article  CAS  Google Scholar 

  49. Boudalia M, Laourayed M, El Moudane M et al (2023) Phosphate glass doped with niobium and bismuth oxides as an eco-friendly corrosion protection matrix of iron steel in HCl medium: Experimental and theoretical insights. J Alloy Compd 938:168570. https://doi.org/10.1016/j.jallcom.2022.168570

    Article  CAS  Google Scholar 

  50. Sowmyashree AS, Somya A, Rao S et al (2023) Potential sustainable electrochemical corrosion inhibition study of citrus limetta on mild steel surface in aggressive acidic media. J Market Res 24:984–994. https://doi.org/10.1016/j.jmrt.2023.02.039

    Article  CAS  Google Scholar 

  51. Liao B, Ma S, Zhang S et al (2023) International Journal of Biological Macromolecules Fructus cannabis protein extract powder as a green and high effective corrosion inhibitor for Q235 carbon steel in 1 M HCl solution. Int J Biol Macromol 239:124358. https://doi.org/10.1016/j.ijbiomac.2023.124358

    Article  CAS  PubMed  Google Scholar 

  52. Lee H, Lee D (2023) Performance and interaction mechanism of a new highly efficient b enzimidazole-base d epoxy resin for corrosion inhibition of carbon steel in HCl : A study based on experimental and first-principles DFTB simulations. J Mol Struct 1273:134232. https://doi.org/10.1016/j.molstruc.2022.134232

    Article  CAS  Google Scholar 

  53. Ogunleye OO, Arinkoola AO, Eletta OA et al (2020) Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon 6:e03205. https://doi.org/10.1016/j.heliyon.2020.e03205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elabbasy HM, Elnagar ME, Fouda AS (2023) Surface interaction and corrosion inhibition of carbon steel in sulfuric acid using Petroselinum crispum extract. J Indian Chem Soc 100:100988. https://doi.org/10.1016/j.jics.2023.100988

    Article  CAS  Google Scholar 

  55. Zehra BF, Said A, Eddine HM et al (2022) Crataegus oxyacantha leaves extract for carbon steel protection against corrosion in 1M HCl: Characterization, electrochemical, theoretical research, and surface analysis. J Mol Struct 1259:132737. https://doi.org/10.1016/j.molstruc.2022.132737

    Article  CAS  Google Scholar 

  56. EL-Zekred MA, Nofal AM, Shalabi K, Fouda AS (2021) Ficus carica extract as environmentally friendly inhibitor for the corrosion of L-80 carbon steel in 0.5 ​M ​H2SO4 media. J Indian Chem Soc 98:100128. https://doi.org/10.1016/j.jics.2021.100128

  57. Singh A, Ansari KR, Ali IH et al (2023) Evaluation of corrosion mitigation properties of pyridinium-based ionic liquids on carbon steel in 15% HCl under the hydrodynamic condition: Experimental, surface, and computational approaches. J Mol Liq 376:121408. https://doi.org/10.1016/j.molliq.2023.121408

    Article  CAS  Google Scholar 

  58. Emori W, Louis H, Okonkwo PC et al (2023) Dispersive adsorption and anticorrosion properties of natural capsaicin on Q235 steel in mixed H2SO4 and NaCl environment: Characterization, experimental and theoretical studies. Sustain Chem Pharm 32:101042. https://doi.org/10.1016/j.scp.2023.101042

    Article  CAS  Google Scholar 

  59. Yeganeh M, Rezvani MH, Laribaghal SM (2021) Electrochemical behavior of additively manufactured 316L stainless steel in H2SO4 solution containing methionine as an amino acid. Colloids Surf, A 627:127120. https://doi.org/10.1016/j.colsurfa.2021.127120

    Article  CAS  Google Scholar 

  60. Tantawy AH, Soliman KA, Abd El-Lateef HM (2021) Experimental and computational approaches of sustainable quaternary bisammonium fluorosurfactants for corrosion inhibition as protective films at mild steel/H2SO4 interface. Colloids Surf, A 614:126141. https://doi.org/10.1016/j.colsurfa.2021.126141

    Article  CAS  Google Scholar 

  61. Zhang W, Li C, Wang W et al (2022) Laminarin and sodium molybdate as efficient sustainable inhibitor for Q235 steel in sodium chloride solution. Colloids Surf, A 637:128199. https://doi.org/10.1016/j.colsurfa.2021.128199

    Article  CAS  Google Scholar 

  62. Zhang W, Zhang Y, Li B et al (2023) High-performance corrosion resistance of chemically-reinforced chitosan as ecofriendly inhibitor for mild steel. Bioelectrochemistry. https://doi.org/10.1016/j.bioelechem.2022.108330

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang W, Nie B, Wang M et al (2021) Chemically modified resveratrol as green corrosion inhibitor for Q235 steel: Electrochemical, SEM, UV and DFT studies. J Mol Liq 343:117672. https://doi.org/10.1016/j.molliq.2021.117672

    Article  CAS  Google Scholar 

  64. Abd El-Lateef HM, Shalabi K, Sayed AR et al (2022) The novel polythiadiazole polymer and its composite with α-Al(OH)3 as inhibitors for steel alloy corrosion in molar H2SO4: Experimental and computational evaluations. J Ind Eng Chem 105:238–250. https://doi.org/10.1016/j.jiec.2021.09.022

    Article  CAS  Google Scholar 

  65. Zaher A, Aslam R, Lee HS et al (2022) A combined computational & electrochemical exploration of the Ammi visnaga L. extract as a green corrosion inhibitor for carbon steel in HCl solution. Arab J Chem. https://doi.org/10.1016/j.arabjc.2021.103573

    Article  Google Scholar 

  66. Ravi S, Peters S, Varathan E et al (2023) Molecular interaction and corrosion inhibition of benzophenone and its derivative on mild steel in 1 N HCl: Electrochemical, DFT and MD simulation studies. Colloids Surf, A. https://doi.org/10.1016/j.colsurfa.2023.130919

    Article  Google Scholar 

  67. Kumar H, Dhanda T (2021) Experimental and theoretical (MDS and FMO) study of 1-Benzylimidazole for mild steel in 0.1 N H2SO4 at normal and elevated temperatures: An efficient anti-pitting and anti-cracking agent. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.129958

    Article  PubMed  PubMed Central  Google Scholar 

  68. Singh AK, Singh M, Thakur S et al (2022) Adsorption study of N (-benzo[d]thiazol-2-yl)-1-(thiophene-2-yl) methanimine at mild steel/aqueous H2SO4 interface. Surf Interfaces 33:102169. https://doi.org/10.1016/j.surfin.2022.102169

    Article  CAS  Google Scholar 

  69. Xu Z, Tan B, Zhang S et al (2023) Journal of the Taiwan Institute of Chemical Engineers Exploring of an ecological corrosion inhibitor of wood hibiscus leaf extract for the Cu / H 2 SO 4 system based on experimental study and theoretical calculations. J Taiwan Inst Chem Eng 143:104686. https://doi.org/10.1016/j.jtice.2023.104686

    Article  CAS  Google Scholar 

  70. Khamaysa OMA, Selatnia I, Zeghache H et al (2020) Enhanced corrosion inhibition of carbon steel in HCl solution by a newly synthesized hydrazone derivative: Mechanism exploration from electrochemical, XPS, and computational studies. J Mol Liq 315:113805. https://doi.org/10.1016/j.molliq.2020.113805

    Article  CAS  Google Scholar 

  71. Toukal L, Foudia M, Haffar D et al (2022) Monte Carlo simulation and electrochemical performance corrosion inhibition whid benzimidazole derivative for XC48 steel in 0.5 M H2SO4 and 1.0 M HCl solutions. J Indian Chem Soc 99:1–11. https://doi.org/10.1016/j.jics.2022.100634

    Article  CAS  Google Scholar 

  72. Njoku DI, Njoku CN, Lgaz H et al (2021) Corrosion protection of Q235 steel in acidic-chloride media using seed extracts of Piper guineense. J Mol Liq 330:115619. https://doi.org/10.1016/j.molliq.2021.115619

    Article  CAS  Google Scholar 

  73. Lgaz H, Saha SK, Chaouiki A et al (2020) Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies. Constr Build Mater 233:117320. https://doi.org/10.1016/j.conbuildmat.2019.117320

    Article  CAS  Google Scholar 

  74. Thoume A, Elmakssoudi A, Left DB et al (2021) Dibenzylidenecyclohexanone as a New Corrosion Inhibitor of Carbon Steel in 1 M HCl. J Bio- and Tribo-Corrosion 7:130. https://doi.org/10.1007/s40735-021-00572-x

    Article  Google Scholar 

  75. El Faydy M, Benhiba F, Kerroum Y et al (2021) Synthesis and anti-corrosion characteristics of new 8-quinolinol analogs with amide-substituted on C35E steel in acidic medium: Experimental and computational ways. J Mol Liq. https://doi.org/10.1016/j.molliq.2020.115224

    Article  Google Scholar 

  76. Rasheeda K, Alamri AH, Krishnaprasad PA et al (2022) Efficiency of a pyrimidine derivative for the corrosion inhibition of C1018 carbon steel in aqueous acidic medium: Experimental and theoretical approach. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2022.128631

    Article  Google Scholar 

  77. Burhagohain P, Sharma G, Bujarbaruah PM (2022) Investigation of a few oxazolone molecules as corrosion inhibitor for API5LX60 steel in 1N H2SO4 solution. Egypt J Pet 31:37–45. https://doi.org/10.1016/j.ejpe.2022.06.006

    Article  Google Scholar 

  78. Jafari H, Ameri E, Rezaeivala M, Berisha A (2022) Experimental and theoretical studies on protecting steel against 0.5 M H2SO4 corrosion by new schiff base. J Indian Chem Soc. https://doi.org/10.1016/j.jics.2022.100665

    Article  Google Scholar 

  79. Uzah TT, Mbonu IJ, Gber TE, Louis H (2023) Synergistic effect of KI and urea on the corrosion protection of mild steel in 0.5 M H2SO4: Experimental and computational insights. Results Chem. https://doi.org/10.1016/j.rechem.2023.100981

    Article  Google Scholar 

  80. Chahmout H, Ouakki M, Sibous S et al (2023) New pyrazole compounds as a corrosion inhibitor of stainless steel in 2.0 M H2SO4 medium: Electrochemical and theoretical insights. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2022.110150

    Article  Google Scholar 

  81. Benzbiria N, Thoume A, Ait El Caid Z et al (2023) An investigation on the utilization of a synthesized benzodiazepine derivative as a corrosion inhibitor for carbon steel in sulfuric solution: Chemical and electrochemical synthesis, surface analysis (SEM/AFM), DFT and MC simulation. Colloids Surf A. https://doi.org/10.1016/j.colsurfa.2023.132744

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Zakaria Ait El Caid: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Writing—original draft. Driss Benmessaoud Left: Formal analysis, Methodology, Writing—original draft. Abderrahmane Thoume: Conceptualization, Data curation, Formal analysis, Writing—review & editing. Rachid Kellal: Conceptualization, Data curation, Formal analysis, Writing—review &amp. Mustapha Zertoubi: Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing.

Corresponding authors

Correspondence to Zakaria Ait El Caid or Driss Benmessaoud Left.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait El Caid, Z., Benmessaoud Left, D., Thoume, A. et al. Insight into the Corrosion Inhibition of Dibenzylidene Acetone for Carbon Steel in a Sulfuric Acid Environment: Synthesis, Experimental, and Theoretical Studies. J Bio Tribo Corros 10, 9 (2024). https://doi.org/10.1007/s40735-023-00813-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00813-1

Keywords

Navigation