Skip to main content
Log in

Drugs: On Sustainable and Green Solution for the Prevention of Metallic Corrosion

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Corrosion is a major problem in industries. It leads to tremendous economic losses in every country. It also causes accidents. Corrosion can be prevented by various practical methods, including using inhibitors. The use of organic corrosion inhibitors is one of the most popular, economical, and effective methods for the prevention of corrosion. Most of these organic inhibitors are toxic and for sustainable solution of corrosion, it is desirable to replace the toxic inhibitors by effective, potent and environment benign corrosion inhibitors. Recently, drugs have emerged as environmentally benign and effective alternatives to be used as corrosion inhibitors in place of traditional organic corrosion inhibitors. They provide reasonably high anticorrosive activity. Besides fresh drugs, expired drugs also act as effective corrosion inhibitors for metals and alloys. The performance of drugs can be further improved by chemical functionalization and the use of synergistic agents. This review presents recent literature on fresh and expired drugs as corrosion inhibitors for various metals and alloys in different corrosion environments encountered in the industries. The chemical structure, classification of drugs based on their medicinal/biological properties, and corrosion inhibition properties have been described in this paper. The effect of chemical modification on the performance of drugs has also been elaborated with example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Data sharing does not apply to this article as no datasets were generated or analysed during the current study.

References

  1. Sparrow GR (1994) Asia Pacific Interfinish, Australian Institute of Metal Finishing, North Melbourne,Victoria, Australia, Oct 2–6

  2. Schiopescu A, Antonescu L, Moraru M, Camenita I (2001) EUROCORR, The European Corrosion Congress,Lake Garda, Italy, Sept–Oct.

  3. Chen TY, Batton C B (2000) Proceedings of the 9thEuropeanSymposium on Corrosion Inhibitors, Ferrara, Italy, 1.

  4. Ateya BG, Al Kharafi FM, El-Shamy AM et al (2009) Electrochemical desulfurization of geothermal fluids under high temperature and pressure. J Appl Electrochem 39:383–389. https://doi.org/10.1007/s10800-008-9683-3

    Article  CAS  Google Scholar 

  5. El-Shamy AM, Shehata MF, Ismail AIM (2015) Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines. App Clay Sci 114:461–466. https://doi.org/10.1016/j.clay.2015.06.041

    Article  CAS  Google Scholar 

  6. Reda Y, El-Shamy AM, Eessaa AK (2018) Effect of hydrogen embrittlement on the microstructures of electroplated steel alloy 4130. Ain Shams Engi J 9(4):2973–2982. https://doi.org/10.1016/j.asej.2018.08.004

    Article  Google Scholar 

  7. Mukherjee D, Benchman R, Marthamuthu S (1997) Tool Alloy Steels (India) 31:22

    Google Scholar 

  8. Miksic B, Splavov T L(1995) University of Ferrara, Italy, 569.

  9. Smith G (1984) Corrosion inhibitors for Acid mediaJ, Br. Corros 19:165

    Google Scholar 

  10. Tanwer S, Shukla S K (2022) Recent advances in the applicability of drugs as corrosion inhibitor on metal surface: A review, Current Research in Green and Sustainable Chemistry, 5: 100227, https://doi.org/10.1016/j.crgsc.2021.100227.

  11. Sykes JM (1990) Br Corros J 25:175

    Article  CAS  Google Scholar 

  12. Ajmal M, Mideen AS, Quraishi MA (1994) Corros Sci 36:76

    Article  Google Scholar 

  13. Reda Y, Zohdy KM, Eessaa AK, El-Shamy A (2020) Effect of Plating Materials on the Corrosion Properties of Steel Alloy 4130. Egypt J Chem 63(2):579–597. https://doi.org/10.21608/ejchem.2019.11023.1706

    Article  Google Scholar 

  14. Abbas AMA, Zakaria ZA, El-Shamy AM et al (2019) Utilization of 1- butylpyrrolidinium Chloride Ionic Liquid as an Eco-friendly Corrosion Inhibitor and Biocide for Oilfield Equipment: Combined Weight Loss, Electrochemical and SEM Studies. Z Phys Chem 235(4):377–406. https://doi.org/10.1515/zpch-2019-1517

    Article  CAS  Google Scholar 

  15. Shehata MF, El-Shamy AM, Zohdy KM, Sherif E-SM, Zein E, Abedin S (2020) Studies on the Antibacterial Influence of Two Ionic Liquids and their Corrosion Inhibition Performance. Appl Sci 10(4):1444. https://doi.org/10.3390/app10041444

    Article  CAS  Google Scholar 

  16. Nassef A E, EL-Bindary R A, El-Shamy A M, El-Hadek M A(2020) Box-Behnken design to enhance the corrosion resistance of high strength steel alloy in 3.5 wt.% NaCl solution, Moroccan Journal of Chemistry, 8(4): 788–80 doi:https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i4.21594

  17. Muhammad F et al .(2018) General properties and comparison of the corrosion inhibition efficiencies of the triazole derivatives for mild steel" Corrosion Reviews, vol. 36( 6) 2018: 507–545. https://doi.org/10.1515/corrrev-2018-0006

  18. El-Shamy A (2020) A Review on: Biocidal Activity of Some Chemical Structures and Their Role in Mitigation of Microbial Corrosion. Egypt J Chem 63(12):5251–5267. https://doi.org/10.21608/ejchem.2020.32160.2683

    Article  Google Scholar 

  19. Alamry KA, Khan A, Aslam J, Hussein MA, Aslam R(2023) Corrosion inhibition of mild steel in hydrochloric acid solution by the expired Ampicillin drug, Sci Rep.25;13(1):6724. doi: https://doi.org/10.1038/s41598-023-33519-y.

  20. El-Shamy A et al (2022) Fabrication, Characterization, And Monitoring Of The Propagation Of Nanocrystalline Zno Thin Film On Ito Substrate Using Electrodeposition Technique. Egypt J Chem 66(2):33–44. https://doi.org/10.21608/ejchem.2022.126134.5595

    Article  Google Scholar 

  21. Megahed M, Abdel Bar M, Abouelez ES, El-Shamy A (2021) Polyamide Coating as a Potential Protective Layer Against Corrosion of Iron Artifacts. Egypt J Chem 64(10):5693–5702. https://doi.org/10.21608/ejchem.2021.70550.3555

    Article  Google Scholar 

  22. Mouneir S, Elhagrasi A, El-Shamy A (2022) A Review on The Chemical Compositions of Natural Products and Their Role in Setting Current Trends and Future Goals. Egypt J Chem 65(5):491–506. https://doi.org/10.21608/ejchem.2021.95577.4486

    Article  Google Scholar 

  23. Popoola L (2019) Organic green corrosion inhibitors (OGCIs): a critical review. Corros Rev 37(2):71–102. https://doi.org/10.1515/corrrev-2018-0058

    Article  CAS  Google Scholar 

  24. Franger S, Sherif, El-Sayed M. et al (2014) Corrosion and Corrosion Inhibition of High Strength Low Alloy Steel in 2.0 M Sulfuric Acid Solutions by 3-Amino-1,2,3-triazole as a Corrosion Inhibitor, Journal of Chemistry, 2014, 538794 https://doi.org/10.1155/2014/538794

  25. El-Shamy A M et al(2020) Optimization of the Influencing Variables on the Corrosion Property of Steel Alloy 4130 in 3.5 wt.% NaCl Solution, Journal of Chemistry, 2020: 9212491 https://doi.org/10.1155/2020/9212491

  26. Megahed M, Youssif M, El-Shamy A (2020) Selective Formula as A Corrosion Inhibitor to Protect the Surfaces of Antiquities Made of Leather-Composite Brass Alloy. Egypt J Chem 63(12):5269–5287. https://doi.org/10.21608/ejchem.2020.41575.2841

    Article  Google Scholar 

  27. Zohdy K M, El-Sherif R M, Ramkumar S, El-Shamy A M (2021) Quantum and electrochemical studies of the hydrogen evolution findings in corrosion reactions of mild steel in acidic medium, Upstream Oil and Gas Technology, 6: 100025 https://doi.org/10.1016/j.upstre.2020.100025.

  28. Zohdy KM, El-Sherif RM, El-Shamy AM (2021) Corrosion and Passivation Behaviors of Tin in Aqueous Solutions of Different pH. J Bio Tribo Corros 7:74. https://doi.org/10.1007/s40735-021-00515-6

    Article  Google Scholar 

  29. Abdel-Karim Amal & El-Shamy A (2022) A Review on Green Corrosion Inhibitors for Protection of Archeological Metal Artifacts, Journal of Bio- and Tribo-Corrosion., 8. https://doi.org/10.1007/s40735-022-00636-6.

  30. Abdel-Karim A, El-Shamy, A & Reda Y (2022)Corrosion and Stress Corrosion Resistance of Al Zn Alloy 7075 by Nano-Polymeric Coatings. Journal of Bio- and Tribo-Corrosion. 8. https://doi.org/10.1007/s40735-022-00656-2.

  31. Gad E & El-Shamy A (2022) Mechanism of Corrosion and Microbial Corrosion of 1,3-Dibutyl Thiourea Using the Quantum Chemical Calculations, Journal of Bio- and Tribo-Corrosion, (8) 3: 101007. https://doi.org/10.1007/s40735-022-00669-x.

  32. Zohdy K, El-Shamy A, Kalmouch A, Gad E (2019) The corrosion inhibition of (2Z,2′Z)-4,4′-(1,2-phenylene bis(azanediyl))bis(4-oxobut-2-enoic acid) for carbon steel in acidic media using DFT. Egypt J Pet 28(4):355–359

    Article  Google Scholar 

  33. Reda Y, Yehia HM, Mm E-S (2022) Microstructural and mechanical properties of Al-Zn alloy 7075 during RRA and triple aging. Egypt J Pet 31(1):9–13. https://doi.org/10.1016/j.ejpe.2021.12.001

    Article  Google Scholar 

  34. Abbas MA, Ismail AS, Zakari K et al (2022) Adsorption, thermodynamic, and quantum chemical investigations of an ionic liquid that inhibits corrosion of carbon steel in chloride solutions. Sci Rep 12:12536. https://doi.org/10.1038/s41598-022-16755-6

    Article  CAS  Google Scholar 

  35. Gece G (2011) Drugs: A review of promising novel corrosion inhibitors. Corros Sci 53(12):3873–3898. https://doi.org/10.1016/j.corsci.2011.08.006

    Article  CAS  Google Scholar 

  36. Enick OV (2006) Do pharmaceutically active compounds have an ecological impact. Thesis, Simon Fraser University, Burnaby, M.Sc

    Google Scholar 

  37. Struck S, Schmidt U, Gruening B, Jaeger IS, . Hossbach J,Preissner R(2008) Toxicity vs. potency: elucidation of toxicity properties discriminating between toxins, drugs, and natural compoundsGenome Inform, 20: 231–242

  38. Dohare P, Chauhan DS, Hammouti B, Quraishi MA (2017) Experimental and Dft Investigation on the Corrosion Inhibition Behavior of Expired Drug Lumerax on Mild Steel in Hydrochloric Acid. Anal Bioanal Electrochem 9:762–783

    CAS  Google Scholar 

  39. Karthikeyan S (2016) Drugs/Antibiotics as potential corrosion inhibitors for Metals-A Review Int. J Chem Tech Res 9:251

    CAS  Google Scholar 

  40. Revie RW. Uhlig's Corrosion Handbook: John Wiley & Sons; 2011.

  41. Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J. Corrosion NACE International. 2016:A1-F5.

  42. Quraishi MA, Chauhan DS, Saji VS. Elsevier Inc. Amsterdam; 2020.

  43. Hossain N, Chowdhury MA, Kchaou M. J. Adhesion Sci. Technol. 2020:1–18.

  44. Zhuang W, Wang X, Zhu W, Zhang Y, Sun D, Zhang R, Wu C (2021) Imidazoline Gemini Surfactants as Corrosion Inhibitors for Carbon Steel X70 in NaCl Solution. ACS Omega 6(8):653–5660. https://doi.org/10.1021/acsomega.0c06103

    Article  CAS  Google Scholar 

  45. Onyeachu IB, Obot IB, Sorour A, Abdul A, Rashid MI (2019) Corros Sci 150:183–193

    Article  CAS  Google Scholar 

  46. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corros Sci 86:17–41

    Article  Google Scholar 

  47. Onyeachu IB, Obot IB, Adesina AY (2020) Corros Sci 168:108589

    Article  CAS  Google Scholar 

  48. Chauhan D S , Quraishi M , Sorour A A , Verma C , (2022,b). A review on corrosion inhibitors for high-pressure supercritical CO2 environment: Challenges and opportunities. Journal of Petroleum Science and Engineering 215, 110695.

  49. Chauhan D S , El-Hajjaji F, Quraishi M (2022a). Heterocyclic ionic liquids as environmentally benign corrosion inhibitors: recent advances and future perspectives. Ionic Liquid-Based Technologies for Environmental Sustainability, pp. 279–294

  50. Ansari F, Chauhan D S, Quraishi M ( 2021) Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications. https://www.wiley.com/en-br/9781119794509, 343–369.

  51. Chauhan DS, Quraishi MA (2021) Recent trends in environmentally sustainable Sweet corrosion inhibitors. J Mol Liq 326:115117

    Article  CAS  Google Scholar 

  52. Chauhan DS, Quraishi MA, Srivastava V, Haque J, El ibrahimi B, (2021) Virgin and chemically functionalized amino acids as green corrosion inhibitors: Influence of molecular structure through experimental and in silico studies. J Mol Struct 1226:129259

    Article  CAS  Google Scholar 

  53. Chauhan DS, Verma C, Quraishi MA (2021) Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights. J Mol Struct 1227:129374

    Article  CAS  Google Scholar 

  54. Quraishi M A, Chauhan D S (2022a) Environmentally sustainable corrosion inhibitors in oil and gas industry. Organic Corrosion Inhibitors: Synthesis, Characterization, Mechanism, and Applications. John Wiley & Sons,. 221–240.

  55. Quraishi M A, Chauhan D S, Ansari, A F( 2021a) Development of environmentally benign corrosion inhibitors for organic acid environments for oil-gas industry. Journal of Molecular Liquids 329, 115514.

  56. Quraishi MA, Chauhan DS, Saji VS (2021) Heterocyclic biomolecules as green corrosion inhibitors. J Mol Liq 341:117265

    Article  CAS  Google Scholar 

  57. Quraishi MA, Chauhan DS et al (2021) Polyethyleneimine Functionalized Graphene Oxide: A Promising Inhibitor for Corrosion of Copper in the Hydrochloric Acid Environment. J Nanosci Nanotechnol 21:3256–3268

    Article  CAS  Google Scholar 

  58. Ramesh T, Chauhan DS, Quraishi MA (2021) Coconut coir dust extract (CCDE) as green corrosion inhibitor for rebar’ steel in concrete environment. International Journal of Corrosion and Scale Inhibition 10:618–633

    CAS  Google Scholar 

  59. Salman M, Ansari K, Srivastava V, Chauhan DS, Haque J, Quraishi M (2021) Chromeno naphthyridines based heterocyclic compounds as novel acidizing corrosion inhibitors: Experimental, surface and computational study. J Mol Liq 322:114825

    Article  CAS  Google Scholar 

  60. Singh P, Singh Chauhan D, Singh Chauhan, S, Ahmad Quraishi M A( 2021). Synergistic Effect of Iodide Ion and N‐methyl‐N, N, N‐trioctylammonium Chloride on Corrosion Inhibition of Carbon Steel in 0.5 M H2SO4: Experimental and Computational Approach. ChemistrySelect, 6, 11417–11430.

  61. Srivastava V, Salman M, Chauhan DS, Abdel-Azeim S, Quraishi MA (2021) (E)-2-styryl-1H-benzo [d] imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. J Mol Liq 324:115010

    Article  CAS  Google Scholar 

  62. El Ibrahimi B, Jmiai A, Bazzi L, El Issami S (2020) 2020 Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab J Chem 13(1):740–771. https://doi.org/10.1016/j.arabjc.2017.07.013

    Article  CAS  Google Scholar 

  63. Pathak RK, Mishra P (2015) Drugs as corrosion inhibitors: A Review. Inter Jour of Sci and Res 5(4):671–677

    Google Scholar 

  64. Abdallah M, Zaafarany I, Al-Karanee SO, Abd El-Fattah AA (2012) Antihypertensive drugs as an inhibitors for corrosion of aluminum and aluminum silicon alloys in aqueous solutions. Arab J Chem 5(2):225–234. https://doi.org/10.1016/j.arabjc.2010.08.017

    Article  CAS  Google Scholar 

  65. Golestani G, Shahidi M, Ghazanfari D (2014) Appl Sur Sci 308:347

    Article  CAS  Google Scholar 

  66. Hari Kumar S , Sathasivam K , Narayanan S, Srinivasan K. (2012). Inhibition Effect of Amoxycillin drug on the Corrosion of Mild Steel in 1N Hydrochloric acid Solution, International Journal of ChemTech Research, 4(3)

  67. Mahdi AS (2014) Amoxicillin as green corrosion inhibitor for concrete reinforced steel in simulated concrete pore solution containing chloride”. International Journal of Advanced Research in Engineering and Technology 5:99–107

    Google Scholar 

  68. Aldana-Gonzalez J, Espinoza-Vazquez A,Romero-RomoM,Uruchurtu-ChavarinJ,Palomar-Pardave M (2015)Arabian J. Chem., xxx, xxx–xxx;https://doi.org/10.1016/j.arabjc.2015.08.033

  69. Obot IB, Ebenso EE, Kabanda MM (2013) J Environ Chem Eng 1:431

    Article  CAS  Google Scholar 

  70. Eddy NO, AandMbabaAJ OS (2008) African J Pure Appl Chem 2:132

    Google Scholar 

  71. Reza I, Ahmad E, Kareem F (2012)Afinidad LXVIII, Enero–Marzo., 557, 47.

  72. Khan MZH, Aziz AMA, Hasan MR, Al-Mamun, (2016) Anti-Corros. Meth Mater 63:308

    CAS  Google Scholar 

  73. Naqvi I, Saleemi AR, Naveed S (2011) Cefixime: Int. J Electrochem Sci 6:146

    Article  CAS  Google Scholar 

  74. Yao N’guessan et al (2021) Experimental and Theoretical Investigations on Copper Corrosion Inhibition by Cefixime Drug in 1M HNO3 Solution, J. of Mat. Sci. & Chem. Engi., 9(5): 11- 28https://doi.org/10.4236/msce.2021.95002

  75. Shukla SK, Quraishi MA (2009) J Appl Electrochem 39:1517

    Article  CAS  Google Scholar 

  76. Li HD et al (2021) Insight into Anticorrosion Mechanism of Ampicillin on Mild Steel in Acidic Environment: A Combined Experimental and Theoretical Approach. J Chem 2021:2090. https://doi.org/10.1155/2021/7675971

    Article  CAS  Google Scholar 

  77. Shukla SK, Quraishi MA (2010) Corros Sci 52:314

    Article  CAS  Google Scholar 

  78. Shukla SK, Quraishi MA (2009) Ceftriaxone: A Novel Corrosion Inhibitor for Mild Steel in Hydrochloric Acid. J Appl Electrochem 39(9):1517–1523

    Article  CAS  Google Scholar 

  79. Obot IB, Obi-Egbedi NO (2010) Corros Sci 52:198

    Article  CAS  Google Scholar 

  80. Singh AK, Quraishi MA (2011) Adsorption Properties and Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ceftobiprole. J Appl Electrochem 41(1):7–18

    Article  CAS  Google Scholar 

  81. Singh AK, Ebenso EE, Quraishi, MA (2013) Corrosion inhibition behavior of cefuzonam at mild steel/HCl acid interface. Res Chem Intermed 39:3033–3042. https://doi.org/10.1007/s11164-012-0815-3

    Article  CAS  Google Scholar 

  82. Singh AK, Shukla SK, Singh M, Quraishi MA (2011) Inhibitive Effect of Ceftazidime on Corrosion of Mild Steel in Hydrochloric Acid Solution. Mater Chem Phys 129:68–76

    Article  CAS  Google Scholar 

  83. Hippolyte N, Coulibaly, (2018) Copper Corrosion Inhibition by Cefpodoxime Drug in 1M Nitric Acid : Experimental and DFT approaches. Int J Innov Appl Stud 24:1299–1311

    Google Scholar 

  84. Abeng F, Anadebe V, Idim V, Edim M (2020) Anti-Corrosion Behaviour of Expired Tobramycin Drug on Carbon Steel in Acidic Medium. S Afr J Chem 73:125–130

    CAS  Google Scholar 

  85. Jebakumar T, Edison Immanuel, Sethuraman M G (2013) Inter. J. Corros., 1.

  86. Obot I B, Obi-Egbedi N O, Umoren S A (2009) Antifungal drugs as corrosion inhibitors for aluminium in 0.1M HCl, Corrosion Science, 51(8): 1868–1875 https://doi.org/10.1016/j.corsci.2009.05.017.

  87. Obot IB, Onyeachu IB, Umoren SA (2019) Corros Sci 159:108140

    Article  CAS  Google Scholar 

  88. Mohammed KZ, Hamdy A, Abbas M (2012) RJPBCS 3:912

    CAS  Google Scholar 

  89. Singh P, Quraishi MA, Ebenso E (2012) Int J Electrochem Sci 7:12270

    Article  CAS  Google Scholar 

  90. Singh A, Ebenso EE, Quraishi MA (2012) Int J Electrochem Sci 7:4766

    Article  CAS  Google Scholar 

  91. Sundaram RG, Vengatesh G, Sundaravadivelu M (2021) Surface Morphological and Quantum Chemical Studies of Some Expired Drug Molecules as Potential Corrosion Inhibitors for Mild Steel in Chloride Medium. Surf Interfaces 22:100841

    Article  CAS  Google Scholar 

  92. Bhata JI, Alva VDP (2011) Arch Appl Sci Res 3:343

    Google Scholar 

  93. Singh P, Singh A, Quraishi MA, Ebenso EE (2012) Int J Electrochem Sci 7:7065

    Article  CAS  Google Scholar 

  94. Ahamad I, Prasad R, Quraishi MA (2010) Experimental and Theoretical Investigations of Adsorption of Fexofenadine at Mild Steel/Hydrochloric Acid Interface as Corrosion Inhibitor. J Solid State Electrochem 14(11):2095–2105

    Article  CAS  Google Scholar 

  95. Quartarone G, Ronchin L, Vavasori A, Tortato C, Bonaldo L (2012) Corros Sci 64:82

    Article  CAS  Google Scholar 

  96. Karthik G, Sundaravadivelu M (2016) Egyptian J. Petrol, 25,:183.

  97. Verma C, Quraishi MA,Verma NK (2016) Ain Shams Eng. J. xxx, xxx–xxx; https://doi.org/10.1016/j.asej.2016.07.003

  98. Reza I, Saleemi AR, Naveed S (2011) Polish J. Chem Tech 13:67

    Google Scholar 

  99. Al-Shafey H I,Hameed A,Ali RS, Abd el-Aleem FA, Aboul-Magd S, Salah M (2014) Int. J. Pharm. Sci. Rev. Res., 27: 146.

  100. Akpan A, Offiong NO (2015) Chem Mater Res 7:17

    Google Scholar 

  101. Singh AK, Khan S, Singh A, Quraishi SM, Quraishi MA, Ebenso EE (2013) Inhibitive effect of chloroquine towards corrosion of mild steel in hydrochloric acid solution. Res Chem Intermed 39(3):1191–1208

  102. Verma C, Quraishi MA, Ebenso EE (2013) Int J Electrochem Sci 8:7401

    Article  CAS  Google Scholar 

  103. Deyab MA, El-Shamy OAA, Thabet HK et al (2023) Electrochemical and theoretical investigations of favipiravir drug performance as ecologically benign corrosion inhibitor for aluminum alloy in acid solution. Sci Rep 13:8680. https://doi.org/10.1038/s41598-023-35226-0

  104. Matad PB, Mokshanatha PB, Hebbar N, Venkatesha VT, Tandon HC (2014) Ind Eng Chem Res 53:8436

    Article  CAS  Google Scholar 

  105. Tasić ZZ, Mihajlović MBP, Simonović AT et al ( 2019) Ibuprofen as a corrosion inhibitor for copper in synthetic acid rain solution. Sci Rep 9:14710. https://doi.org/10.1038/s41598-019-51299-2

  106. Singh AK, Quraishi MA (2010) Inhibitive effect of diethylcarbamazine on the corrosion of mild steel in hydrochloric acid. Corros Sci 52(4):1529–1535

    Article  CAS  Google Scholar 

  107. Samide A, Tutunaru B, Ionescu C, Rotaru P, Simoiu L (2014) J Therm Anal Calorim 118:631

    Article  CAS  Google Scholar 

  108. Gupta NK, Gopal C, Srivastava V, Quraishi MA (2017) Application of expired drugs in corrosion inhibition of mild steel. Int J Pharm Chem Anal 4:8–12

    CAS  Google Scholar 

  109. Abood HA (2011) The study of the inhibitory properties of Omeprazole on the corrosion of Aluminum 6063 in alkaline media. Bas J Sci 28:74–93

    Google Scholar 

  110. Adil H (2015) Corrosion inhibition of zinc metal in 2M hydrochloric acid solution by using Guaifenesin drug as an inhibitor and theoretical calculations. Journal of AlNahrain University 18:60–65

    Google Scholar 

  111. Abdallah M (2019) Ketamine drug as an inhibitor for the corrosion of 316 stainless steel in 2M HCl solution. Int J Electrochem Sci 14:10227–10247. https://doi.org/10.20964/2019.11.10

    Article  CAS  Google Scholar 

  112. Raghavendra NL et al (2019) Corrosion inhibition property of expired fluoxymesterone drug on the aluminum (Al) surface In 3 % Nacl solution. Int J Curr Pharm Res 11(3):48–50. https://doi.org/10.22159/ijcpr.2019v11i3.34100

    Article  CAS  Google Scholar 

  113. Smith JS (2003) Outdated drugs may be useful. BMJ 326(7379):51

    Article  Google Scholar 

  114. Dahiya Shefali et al (2018) Corrosion inhibition activity of an expired antibacterial drug in acidic media amid elucidate DFT and MD simulations. Portugaliae Electrochimica Acta 2018 36(3):213–230. https://doi.org/10.4152/pea.201803213

    Article  CAS  Google Scholar 

  115. Vaszilcsin N, Ordodi V, Borza A (2012) Corrosion inhibitors from expired drugs. Int J Pharm 431(1–2):241–244

    Article  CAS  Google Scholar 

  116. Chauhan DS, Sorour AA, Quraishi MA (2016) An overview of expired drugs as novel corrosion inhibitors for metals and alloys. Int J Chem Pharm Sci 4:680–691

    CAS  Google Scholar 

  117. Dan M, Vaszilcsin N, Labosel M, Pancan B (2014) Expired zosyn drug as corrosion inhibitor for carbon steal in sodium chloride solution. Chemical Bulletin of “Politehnica” University of Timisoara. Romania Series of Chemistry and Environmental Engineering 59:13–18

    CAS  Google Scholar 

  118. Onyeachu IB, Abdel-Azeim S, Chauhan DS, Quraishi MA (2021) ACS Omega 6(1):65–76

    Article  CAS  Google Scholar 

  119. Haruna K, Saleh TA, Quraishi MA (2020) Expired metformin drug as green corrosion inhibitor for simulated oil/gas well acidizing environment. J Mol Liq 315:113716

    Article  CAS  Google Scholar 

  120. Singh AK, Chugh B, Sah K, Banerjee P, Ebenso EE, Thakur S, Pani B (2019) Results Phys 14:102383

    Article  Google Scholar 

  121. Hameed RSA (2010) Ranitidine drugs as non-toxic corrosion inhibitors for mild steel in hydrochloric acid medium. Port Electrochim Acta 29(4):273–285

    Article  Google Scholar 

  122. Singh P, Chauhan DS, Srivastava K, Srivastava V, Quraishi MA (2017) Expired atorvastatin drug as corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Ind Chem 8(4):363–372

    Article  CAS  Google Scholar 

  123. Fadila B, Sihem A, Sameh A, Kardas G (2019) A study on the inhibition effect of expired amoxicillin on mild steel corrosion in 1 N HCl. Mate Res Exp 6(4):46419

  124. Dohare P, Chauhan DS, Quraishi MA (2017) Expired podocip drug as potential corrosion inhibitor for carbon steel in acid chloride solution. Int J Corros Scale Inhib 7:25–37

    Google Scholar 

  125. El-Desoky AM, Ahmed HM, Ali AE (2015) Electrochemical and analytical study of the corrosion inhibitory behavior of expired pharmaceutical compounds for C-steel corrosion. Int J Electrochem Sci 10:5112–5129

    Article  CAS  Google Scholar 

  126. Singh P, Chauhan DS, Chauhan SS, Singh G, Quraishi MA (2019) Chemically modifiedExpired dapsone drug as environmentally benign corrosion inhibitor for mild steel in sulphuric acid useful for industrial pickling process. J Mol Liq 286:110903

    Article  CAS  Google Scholar 

  127. Singh A, Ansari KR, Quraishi MA, Kaya S, Guo L (2020) Aminoantipyrine derivatives as a novel eco-friendly corrosion inhibitors for P110 steel in simulating acidizing environment: experimental and computational studies. J Nat Gas Sci Eng 83:103547

    Article  CAS  Google Scholar 

  128. Singh AK, Pandey AK, Banerjee P, Saha SK et al (2019) Eco-friendly disposal of expired anti-tuberculosis drug isoniazid and its role in the protection of metal. J Environ Chem Eng 7(2):102971

    Article  CAS  Google Scholar 

  129. Dariva CG, Galio A F(2014) Corrosion inhibitors–principles, mechanisms and applications. In: Aliofkhazraei M (ed) Developments in corrosion protection, INTECH:Winchester, UK, pp 365–379

Download references

Acknowledgements

The authors alone are responsible for the content and writing of the paper.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data collection and preparation of tables and figures were done by S. Yadav, M. Shukla, R. Mishra, C. Gupta, K.S. Tiwari and R.S. Nigam. The first draft of the manuscript was written by S. Yadav. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shailendra Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Shukla, M., Mishra, R. et al. Drugs: On Sustainable and Green Solution for the Prevention of Metallic Corrosion. J Bio Tribo Corros 9, 79 (2023). https://doi.org/10.1007/s40735-023-00799-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00799-w

Keywords

Navigation