Skip to main content

Advertisement

Log in

Organic Synthesized Inhibitors for Corrosion Protection of Carbon Steel: A Comprehensive Review

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The review paper presents a thorough examination of the multifaceted aspects of corrosion on carbon steel and its profound implications for the economy and the environment. The paper meticulously surveys a wide range of corrosion inhibitors, with a particular focus on organic inhibitors, green inhibitors, and environment-friendly corrosion inhibitors, including inorganic inhibitors. The efficacy of these inhibitors in safeguarding carbon steel against corrosion is comprehensively evaluated. In addition, the review paper explores and analyzes various techniques employed for corrosion measurement, encompassing weight loss measurement, polarization measurements, linear polarization resistance (LPR), and electrochemical impedance spectroscopy (EIS). Moreover, the paper delves into recent patents pertaining to green corrosion inhibitors, shedding light on innovative and sustainable approaches to corrosion protection. Ultimately, the conclusion of this review offers valuable insights into the potential applications of organic synthesized inhibitors in corrosion protection, positioning the paper as an indispensable reference for researchers and professionals immersed in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Not applicable.

Sample Availability

Not applicable.

References

  1. Rani BE, Bharathi BJ, Basu (2012) Green inhibitors for corrosion protection of metals and alloys: an overview. Int J Corrosi. https://doi.org/10.1155/2012/380217

    Article  Google Scholar 

  2. Salman TA, Al-Amiery AA, Shaker LM, Kadhum AAH, Takriff MS (2019) A study on the inhibition of mild steel corrosion in hydrochloric acid environment by 4-methyl-2-(pyridin-3-yl) thiazole-5-carbohydrazide. Int J Corrosi Scale Inhib 8(4):1035–1059

    CAS  Google Scholar 

  3. Jawad Q, Zinad DS, Salim RD, Al-Amiery AA, Gaaz TS, Takriff MS, Abdul AH, Kadhum. (2019) Synthesis characterization and corrosion inhibition potential of novel thiosemicarbazone on mild steel in sulfuric acid environment. Coatings 9(11):729

    Article  CAS  Google Scholar 

  4. Salman TA, Jawad QA, Hussain MAM, Al-Amiery AA, Mohamed L, Kadhum AAH, Takriff MS (2019) Novel ecofriendly corrosion inhibition of mild steel in strong acid environment: Adsorption studies and thermal effects. Int J Corrisi Scale Inhib 8(4):1123–1137

    CAS  Google Scholar 

  5. Chauhan DS, Quraishi MA, Sorour AA, Verma C (2022) A review on corrosion inhibitors for high-pressure supercritical CO2 environment: challenges and opportunities. J Petroleum Sci Eng. https://doi.org/10.1016/j.petrol.2022.110695

    Article  Google Scholar 

  6. Werle M (2008) Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res 25:500–511

    Article  CAS  Google Scholar 

  7. Olajire Abass A (2020) Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. Chem Eng J Adv. https://doi.org/10.1016/j.ceja.2020.100049

    Article  Google Scholar 

  8. Hall DS, Keech PG (2017) An overview of the Canadian corrosion program for the long-term management of nuclear waste. Corros Eng, Sci Technol 52(sup1):2–5

    Article  CAS  Google Scholar 

  9. Harsimran S, Santosh K, Rakesh K (2021) Overview of corrosion and its control: A critical review. Proc Eng Sci 3(1):13–24

    Google Scholar 

  10. Aljeaban NA, Goni LKMO, Alharbi BG, Jafar Mazumder MA, Ali SA, Chen T, Quraishi MA, Al-Muallem HA (2020) Polymers decorated with functional motifs for mitigation of steel corrosion: an overview. Int J Polym Sci. https://doi.org/10.1155/2020/9512680

    Article  Google Scholar 

  11. Martínez-Viademonte P, Mariana ST, Abrahami TH, Burchardt M, Terryn H (2020) A review on anodizing of aerospace aluminum alloys for corrosion protection. Coatings 10(11):1106

    Article  Google Scholar 

  12. Abrahami ST, Hauffman T, de Kok JMM, Mol JMC, Terryn H (2016) Effect of anodic aluminum oxide chemistry on adhesive bonding of epoxy. J Phys Chem C 120(35):19670–19677

    Article  CAS  Google Scholar 

  13. Davis Joseph R (ed) (2001) Copper and copper alloys. ASM international, Novelty

    Google Scholar 

  14. Qian Y, Li Y, Jungwirth S, Seely N, Fang Y, Shi X (2015) The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: A. Int J Electrochem Sci 10:10756–10780

    Article  Google Scholar 

  15. Khazraji Al, Radha M, Wang J, Wei S (2023) Recent Progress of Anode Protection in Li–S Batteries. Energ Technol 11(1):2200944

    Article  Google Scholar 

  16. Ahmed ES, Junaid G. Mohan Ganesh. (2022A) Comprehensive overview on corrosion in rcc and its prevention using various green corrosion inhibitors. Buildings 12(10):1682

    Article  Google Scholar 

  17. Uhlig, Herbert Henry, and Robert Winston Revie. "Corrosion and corrosion control." (1985).

  18. Koch Gerhardus (2017) Cost of corrosion. Trend OilGas Corrosi Res Technol. https://doi.org/10.1016/B978-0-08-101105-8.00001-2

    Article  Google Scholar 

  19. Revie RW (2008) Corrosion and corrosion control: an introduction to corrosion science and engineering. Wiley, Hoboken

    Book  Google Scholar 

  20. Scully, John Christopher. Fundamentals of corrosion. (1975).

  21. Thompson NG, Yunovich M, Dunmire D (2007) Cost of corrosion and corrosion maintenance strategies. Corros Rev 25(3–4):247–262

    Article  CAS  Google Scholar 

  22. Basukumar, H. K., and K. V. Arun. 2022 Stress Corrosion Cracking Behavior of Spring Steel in Aggressive Corrosion Environment. In Recent Trends in Electrochemical Science and Technology: Proceedings of Papers Presented at NSEST-2020 and ECSIRM-2020, Springer, Singapore, pp. 67–76

  23. Bataille, Chris. (2020) Low and zero emissions in the steel and cement industries

  24. Bataille, Chris. (2020) Low and zero emissions in the steel and cement industries: Barriers, technologies and policies

  25. Nyborg, Rolf. 2002 Overview of CO2 corrosion models for wells and pipelines. In CORROSION 2002. OnePetro

  26. Xu X, Liu S, Smith K, Cui Y, Wang Z (2020) An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. J Clean Prod 276:124079

    Article  CAS  Google Scholar 

  27. Al-Janabi YT (2020) An overview of corrosion in oil and gas industry: upstream, midstream, and downstream sectors. Corrosi Inhib Oil and Gas Ind. https://doi.org/10.1002/9783527822140.ch1

    Article  Google Scholar 

  28. Gece G (2008) The use of quantum chemical methods in corrosion inhibitor studies. Corros Sci 50(11):2981–2992

    Article  CAS  Google Scholar 

  29. Kadhum Abdul Amir, H. Ahmed A. Al-Amiery Mukaram Shikara A. Mohamad R. Al-Bayati (2012) Synthesis, structure elucidation and DFT studies of new thiadiazoles. Int J Phys Sci 6(29):6692–6697

    Google Scholar 

  30. Al-Amiery A, Shaker LM, Abdul AH, Kadhum Mohd S. Takriff (2020) Synthesis, characterization and gravimetric studies of novel triazole-based compound. Int J Low-Carbon Technol 15(2):164–170

    Article  CAS  Google Scholar 

  31. Walker R (1970) The use of benzotriazole as a corrosion inhibitor for copper. Anti-Corrosi Meth Mater 17(9):9–15

    Article  CAS  Google Scholar 

  32. Ko S-J, Choi S-R, Hong M-S, Kim W-C, Kim J-G (2021) Effect of imidazole as corrosion inhibitor on carbon steel weldment in district heating water. Materials 14(16):4416

    Article  CAS  Google Scholar 

  33. Gupta S, Gupta KK, Andersson M, Yazdi R, Ambat R (2022) Electrochemical and molecular modelling studies of CO2 corrosion inhibition characteristics of alkanolamine molecules for the protection of 1Cr steel. Corrosi Sci. https://doi.org/10.1016/j.corsci.2021.109999

    Article  Google Scholar 

  34. Kuznetsov YI, Redkina GV (2022) Thin protective coatings on metals formed by organic corrosion inhibitors in neutral media. Coatings 12(2):149

    Article  CAS  Google Scholar 

  35. Magrati P, Subedi DB, Pokharel DB, Bhattarai J (2020) Appraisal of different inorganic inhibitors action on the corrosion control mechanism of mild steel in HNO3 solution. J Nepal Chem Soc 41(1):64–73

    Article  Google Scholar 

  36. Kumar Anil (2020) Introduction of Inhibitors, Mechanism and Application for Protection of Steel Reinforcement Corrosion in Concrete. Corrosion. IntechOpen, London

    Google Scholar 

  37. Faccini M, Bautista L, Soldi L, Escobar AM, Altavilla M, Calvet M, Domènech A, Domínguez E (2021) Environmentally friendly anticorrosive polymeric coatings. Appl Sci 11(8):3446

    Article  CAS  Google Scholar 

  38. Al-Amiery AA, Othman MH, Ahmed TA, Abdullah TS, Gaaz Abdul Amir H. Kadhum (2018) Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid. Results Phys 9:978–981

    Article  Google Scholar 

  39. Aziz IA, Alkadir MH, Abdulkareem IA, Annon MM, Hanoon MHH, Al-Kaabi LM, Shaker AA, Alamiery WN, Isahak RW, Takriff MS (2022) Weight loss, thermodynamics, SEM, and electrochemical studies on N-2-methylbenzylidene-4-antipyrineamine as an inhibitor for mild steel corrosion in hydrochloric acid. Lubricants 10(2):23

    Article  CAS  Google Scholar 

  40. Bastos AC, Ferreira MGS, Simões AM (2005) Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc. Prog Org Coat 52(4):339–350

    Article  CAS  Google Scholar 

  41. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Article  Google Scholar 

  42. Caldona EB, Zhang M, Guangchao Liang T, Hollis K, Webster CE, Smith Jr DW, Wipf DO (2021) Corrosion inhibition of mild steel in acidic medium by simple azole-based aromatic compounds. J Electroanal Chem 880:114858

    Article  CAS  Google Scholar 

  43. Zaferani SH, Sharifi M, Zaarei D, Shishesaz MR (2013) Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes–A review. J Environ Chem Eng 1(4):652–657

    Article  Google Scholar 

  44. Ashassi-Sorkhabi H, Ghalebsaz-Jeddi N, Hashemzadeh F, Jahani H (2006) Corrosion inhibition of carbon steel in hydrochloric acid by some polyethylene glycols. Electrochim Acta 51(18):3848–3854

    Article  CAS  Google Scholar 

  45. Verma C, Quraishi MA, Rhee KY (2022) Aqueous phase polymeric corrosion inhibitors: Recent advancements and future opportunities. J Mol Liquids 348:118387

    Article  CAS  Google Scholar 

  46. Farjami A, Yousefnia H, Seyedraoufi Z-S, Shajari Y (2020) Investigation of inhibitive effects of 2-mercaptobenzimidazole (2-MBI) and polyethyleneimine (PEI) on pitting corrosion of austenitic stainless steel. J Bio-and Tribo-Corrosi 6:1–19

    Article  Google Scholar 

  47. Zhu H, Chen X, Li X, Wang J, Zhiyong Hu, Ma X (2020) 2-aminobenzimidazole derivative with surface activity as corrosion inhibitor of carbon steel in HCl: experimental and theoretical study. J Mol Liq 297:111720

    Article  CAS  Google Scholar 

  48. Bendris B, Becerra JC (2022) Design and experimental evaluation of an aerial solution for visual inspection of tunnel-like infrastructures. Remote Sens 14(1):195

    Article  Google Scholar 

  49. Law DW, Cairns J, Millard SG, Bungey JH (2004) Measurement of loss of steel from reinforcing bars in concrete using linear polarisation resistance measurements. NDT and E Int 37(5):381–388

    Article  CAS  Google Scholar 

  50. Zhi Li, Peng Z, Zhifu W, Qiang S, Yinan R (2017) State of charge estimation for Li-ion battery based on extended Kalman filter. Energy Procedia 105:3515–3520

    Article  Google Scholar 

  51. Eskandari H, Nic AM, Ghanei A (2016) Effect of air entraining admixture on corrosion of reinforced concrete. Procedia Eng 150:2178–2184

    Article  CAS  Google Scholar 

  52. Samples, Metal. (2018) Introduction to Linear Polarization Resistance (LPR) Monitoring [WWW Document]. URL http://www.alspi.com/lprintro.htm (accessed 5.10. 18) 

  53. Jiang J, Lin Z, Qun Ju, Ma Z, Zheng C, Wang Z (2017) Electrochemical impedance spectra for lithium-ion battery ageing considering the rate of discharge ability. Energy Procedia 105:844–849

    Article  CAS  Google Scholar 

  54. Jägle M, Pernau HF, Pfützner M, Benkendorf M, Li X, Bartel M, Herm O et al (2016) Thermal-electrical impedance spectroscopy for fluid characterisation. Procedia Eng 168:770–773

    Article  Google Scholar 

  55. Andre D, Meiler M, Steiner K, Walz H, Soczka-Guth T, Sauer DU (2011) Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling. J Power Sources 196(12):5349–5356

    Article  CAS  Google Scholar 

  56. Zhao Y, Wang Mi, Yao J (2015) Characterization of colloidal particles using electrical impedance spectroscopy in two-electrode system with carbon probe. Procedia Eng 102:322–328

    Article  CAS  Google Scholar 

  57. Al-Amiery AA, Kadhum AAH, Kadihum A, Mohamad AB, How CK, Junaedi S (2014) Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by New Schiff Base. Materials 7:787–804. https://doi.org/10.3390/ma7020787

    Article  CAS  Google Scholar 

  58. Mahmood D, Al-Okbi AK, Hanon MM, Rida KS, Alkaim AF, Al-Amiery AA, Kadhum A, Kadhum AAH (2018) Carbethoxythiazole corrosion inhibitor: as an experimentally model and DFT theory. J Eng Appl Sci 13(11):3952

    Google Scholar 

  59. Wang G, Wan Yi, Wang T, Liu Z (2017) Corrosion behavior of titanium implant with different surface morphologies. Procedia Manuf 10:363–370

    Article  CAS  Google Scholar 

  60. Al-Amiery AA, Shaker LM (2020) Corrosion inhibition of mild steel using novel pyridine derivative in 1 M hydrochloric acid. Koroze a Ochrana Materiálu 64(2):59–64

    Article  CAS  Google Scholar 

  61. Holland RI (1991) Use of potentiodynamic polarization technique for corrosion testing of dental alloys. Eur J Oral Sci 99(1):75–85

    Article  CAS  Google Scholar 

  62. Mahdi BS, Abbass MK, Mohsin MK, Al-Azzawi WK, Hanoon MM, Al-Kaabi MHH, Shaker LM et al (2022) Corrosion inhibition of mild steel in hydrochloric acid environment using terephthaldehyde based on Schiff base: Gravimetric, thermodynamic, and computational studies. Molecules 27(15):4857

    Article  CAS  Google Scholar 

  63. Khalid Al-Azzawi W, Hussein SS, Salih SM, Zinad DS, Al-Azzawi RK, Hanoon MM, Al-Amiery A et al (2023) Efficient protection of mild steel corrosion in hydrochloric acid using 3-(5-Amino-1, 3, 4-thiadiazole-2yl)-2H-chromen-2-one, a coumarin derivative bearing a 1 3 4-thiadiazole moiety: gravimetrical techniques, computational and thermodynamic investigations. Prog Color Colorants Coatings 16(1):97–111

    Google Scholar 

  64. Alamiery Ahmed A (2022) Study of corrosion behavior of N’-(2-(2-oxomethylpyrrol-1-yl) ethyl) piperidine for mild steel in the acid environment. Biointerf Res Appl Chem 12(3):3638–3646

    CAS  Google Scholar 

  65. Alamiery A, Mohamad AB, Kadhum AAH, Takriff MS (2022) Comparative data on corrosion protection of mild steel in HCl using two new thiazoles. Data Brief 40:107838

    Article  CAS  Google Scholar 

  66. Mustafa AM, Sayyid FF, Betti N, Shaker LM, Hanoon MM, Alamiery AA, Kadhum AAH, Takriff MS (2022) Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. South African J Chem Eng 39:42–51. https://doi.org/10.1016/j.sajce.2021.11.009

    Article  Google Scholar 

  67. Alamiery AA (2022) Investigations on corrosion inhibitory effect of newly quinoline derivative on mild steel in HCl solution complemented with antibacterial studies. Biointerf Res Appl Chem 12(2):1561–1568

    CAS  Google Scholar 

  68. Alkadir Aziz IA, Annon IA, Abdulkareem MH, Hanoon MM, Alkaabi MH, Shaker LM, Alamiery AA, Wan Isahak WNR, Takriff MS (2021) Insights into corrosion inhibition behavior of a 5-mercapto-1, 2, 4-triazole derivative for mild steel in hydrochloric acid solution: experimental and DFT studies. Lubricants. https://doi.org/10.3390/lubricants9120122

    Article  Google Scholar 

  69. Alamiery A (2021) Short report of mild steel corrosion in 0.5 m H2SO4 by 4-ethyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide. J Tribol 30:90–99

    Google Scholar 

  70. Alamiery AA, Isahak WNRW, Takriff MS (2021) Inhibition of mild steel corrosion by 4-benzyl-1-(4-oxo-4-phenylbutanoyl)thiosemicarbazide: Gravimetrical, adsorption and theoretical studies. Lubricants 9(9):93

    Article  CAS  Google Scholar 

  71. Dawood MA, Alasady ZMK, Abdulazeez MS, Ahmed DS, Sulaiman GM, Kadhum AAH, Shaker LM, Alamiery AA (2021) The corrosion inhibition effect of a pyridine derivative for low carbon steel in 1 M HCl medium: complemented with antibacterial studies. Int J Corros Scale Inhib 10(4):1766–1782. https://doi.org/10.17675/2305-6894-2021-10-4-25

    Article  CAS  Google Scholar 

  72. Alamiery A (2021) Corrosion inhibition effect of 2-N-phenylamino-5-(3-phenyl-3-oxo-1-propyl)-1,3,4-oxadiazole on mild steel in 1 M hydrochloric acid medium: Insight from gravimetric and DFT investigations. Mater Sci Energy Technol 4:398–406

    CAS  Google Scholar 

  73. Alamiery AA (2021) Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 05 M sulfuric Acid: gravimetrical and theoretical studies. Mater Sci Energy Technol 4:263–273

    CAS  Google Scholar 

  74. Alamiery AA, Isahak WNRW, Aljibori HSS, Al-Asadi HA, Kadhum AAH (2021) Effect of the structure, immersion time and temperature on the corrosion inhibition of 4-pyrrol-1-yl-n-(2,5-dimethyl-pyrrol-1-yl)benzoylamine in 1.0 m HCl solution. Int J Corros Scale Inhib 10(2):700–713. https://doi.org/10.17675/2305-6894-2021-10-2-14

    Article  CAS  Google Scholar 

  75. Al-Amiery AA, Mohamad AB, Kadhum AAH et al (2022) Experimental and theoretical study on the corrosion inhibition of mild steel by nonanedioic acid derivative in hydrochloric acid solution. Sci Rep 12:4705. https://doi.org/10.1038/s41598-022-08146-8

    Article  CAS  Google Scholar 

  76. Alamiery A, Mahmoudi E, Allami T (2021) Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies. Int J Corros Scale Inhib 10(2):749–765. https://doi.org/10.17675/2305-6894-2021-10-2-17

    Article  CAS  Google Scholar 

  77. Eltmimi AJM, Alamiery A, Allami AJ, Yusop RM, Kadhum AH, Allami T (2021) Inhibitive effects of a novel efficient Schiff base on mild steel in hydrochloric acid environment. Int J Corros Scale Inhib 10(2):634–648. https://doi.org/10.17675/2305-6894-2021-10-2-10

    Article  CAS  Google Scholar 

  78. Alamiery A, Shaker LM, Allami T, Kadhum AH, Takriff MS (2021) A study of acidic corrosion behavior of Furan-Derived schiff base for mild steel in hydrochloric acid environment: Experimental, and surface investigation. Mater Today Proc 44:2337–2341

    Article  CAS  Google Scholar 

  79. Al-Baghdadi SB, Al-Amiery AA, Gaaz TS, Kadhum AAH (2021) Terephthalohydrazide and isophthalo-hydrazide as new corrosion inhibitors for mild steel in hydrochloric acid: Experimental and theoretical approaches. Koroze a Ochrana Materialu 65(1):12–22

    Article  CAS  Google Scholar 

  80. Hanoon MM, Resen AM, Shaker LM, Kadhum AAH, Al-Amiery AA (2021) Corrosion investigation of mild steel in aqueous hydrochloric acid environment using n-(Naphthalen-1yl)-1-(4-pyridinyl)methanimine complemented with antibacterial studies. Biointerf Res Appl Chem 11(2):9735–9743

    CAS  Google Scholar 

  81. Al-Baghdadi S, Gaaz TS, Al-Adili A, Al-Amiery AA, Takriff MS (2021) Experimental studies on corrosion inhibition performance of acetylthiophene thiosemicarbazone for mild steel in HCl complemented with DFT investigation. Int J Low-Carbon Technol 16(1):181–188

    Article  CAS  Google Scholar 

  82. Al-Amiery AA (2021) Anti-corrosion performance of 2-isonicotinoyl-n-phenylhydrazinecarbothioamide for mild steel hydrochloric acid solution: Insights from experimental measurements and quantum chemical calculations. Surf Rev Lett 28(3):2050058

    Article  CAS  Google Scholar 

  83. Abdulazeez MS, Abdullahe ZS, Dawood MA, Handel ZK, Mahmood RI, Osamah S, Kadhum AH, Shaker LM, Al-Amiery AA (2021) Corrosion inhibition of low carbon steel in HCl medium using a thiadiazole derivative: weight loss DFT studies and antibacterial studies. Int J Corros Scale Inhib 10(4):1812–1828. https://doi.org/10.17675/2305-6894-2021-10-4-27

    Article  CAS  Google Scholar 

  84. Mustafa AM, Sayyid FF, Betti N, Hanoon MM, Al-Amiery A, Kadhum AAH, Takriff MS (2021) Inhibition evaluation of 5-(4-(1H-pyrrol-1-yl)phenyl)-2-mercapto-1,3,4-oxadiazole for the corrosion of mild steel in an acidic environment: thermodynamic and DFT Aspects. Tribol Finnish J Tribol 38(4):39–47. https://doi.org/10.30678/fjt.105330

    Article  Google Scholar 

  85. Abdulsahib YM, Eltmimi AJM, Alhabeeb SA, Hanoon MM, Al-Amiery AA, Allami T, Kadhum AAH (2021) Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytolueneylidene)-4-methylpyridin-2-amine for the corrosion of mild steel in hydrochloric acid. Int J Corros Scale Inhib 10(3):885–899. https://doi.org/10.17675/2305-6894-2021-10-3-3

    Article  CAS  Google Scholar 

  86. Khudhair AK, Mustafa AM, Hanoon MM, Al-Amiery A, Shaker LM, Gazz T, Mohamad AB, Kadhum AH, Takriff MS (2021) Experimental and Theoretical Investigation on the Corrosion Inhibitor Potential of N-MEH for Mild Steel in HCl. Prog Color Colorants Coatings 15(2):111–122. https://doi.org/10.30509/PCCC.2021.166815.1111

    Article  Google Scholar 

  87. Zinad DS, Salim RD, Betti N, Shaker LM, AA AL-Amiery (2021) Comparative investigations of the corrosion inhibition efficiency of a 1-phenyl- 2-(1-phenylethylidene)hydrazine and its analog against mild steel corrosion in hydrochloric acid solution. Prog Color Colorants Coatings 15(1):53–63

    Google Scholar 

  88. Salim RD, Betti N, Hanoon M, Al-Amiery AA (2021) 2-(2,4-Dimethoxybenzylidene)-N-Phenylhydrazinecarbothioamide as an efficient corrosion inhibitor for mild steel in acidic environment. Prog Color Colorants Coatings 15(1):45–52

    Google Scholar 

  89. Al-Amiery AA, Shaker LM, Kadhum AH, Takriff MS (2021) Exploration of furan derivative for application as corrosion inhibitor for mild steel in hydrochloric acid solution: Effect of immersion time and temperature on efficiency. Mater Today Proc 42:2968–2973

    Article  CAS  Google Scholar 

  90. Resen AM, Hanoon MM, Alani WK, Kadhim A, Mohammed AA, Gaaz TS, Kadhum AAH, Al-Amiery AA, Takriff MS (2021) Exploration of 8-piperazine-1-ylmethylumbelliferone for application as a corrosion inhibitor for mild steel in hydrochloric acid solution. Int J Corros Scale Inhib 10(1):368–387. https://doi.org/10.17675/2305-6894-2021-10-1-21

    Article  CAS  Google Scholar 

  91. Hanoon MM, Resen AM, Al-Amiery AA, Kadhum AAH, Takriff MS (2021) Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl)Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl. Prog Color Colorants Coatings 15(1):21–33

    Google Scholar 

  92. Hashim FG, Salman TA, Al-Baghdadi SB, Gaaz T, Al-Amiery AA (2020) Inhibition effect of hydrazine-derived coumarin on a mild steel surface in hydrochloric acid. Tribologia 37(3–4):45–53

    Google Scholar 

  93. Resen AM, Hanoon M, Salim RD, Al-Amiery AA, Shaker LM, Kadhum AAH (2020) Gravimetrical, theoretical, and surface morphological investigations of corrosion inhibition effect of 4-(benzoimidazole-2-yl) pyridine on mild steel in hydrochloric acid. Koroze a Ochrana Materialu 64(4):122–130. https://doi.org/10.2478/kom-2020-0018

    Article  CAS  Google Scholar 

  94. Salman AZ, Jawad QA, Ridah KS, Shaker LM, Al-Amiery AA (2020) Selected BIS-thiadiazole: synthesis and corrosion inhibition studies on mild steel in HCL environment. Surf Rev Lett 27(12):2050014

    Article  CAS  Google Scholar 

  95. Xu Z, Gan Y, Zeng J, Chen J, Anqing F, Zheng X, Li W (2023) Green synthesis of functionalized fluorescent carbon dots from biomass and their corrosion inhibition mechanism for copper in sulfuric acid environment. Chem Eng J. https://doi.org/10.1016/j.cej.2023.144425

    Article  Google Scholar 

  96. Sharma D, Thakur A, Sharma MK, Sharma R, Kumar S, Sihmar A, Dahiya H et al (2023) Effective corrosion inhibition of mild steel using novel 1, 3, 4-oxadiazole-pyridine hybrids: synthesis, electrochemical, morphological, and computational insights. Environ Res. https://doi.org/10.1016/j.envres.2023.116555

    Article  Google Scholar 

  97. Zeng H, Zhao X, Wang Yi, Dong X, Liu A, Ren X (2023) Investigation of the inhibition mechanism of organic corrosion inhibitors on the copper surface by DFT study and MD simulations. ChemistrySelect 8(23):e202204908

    Article  CAS  Google Scholar 

  98. Huang Z, Liu L, Lei B, Meng G, Feng Z, Guo H, Liao B, Zhang P (2023) A New imidazole derivative for corrosion inhibition of Q235 carbon steel in an acid environment. Polymers 15(11):2420

    Article  CAS  Google Scholar 

  99. Afshari F, Ghomi ER, Dinari M, Ramakrishna S (2023) Recent advances on the corrosion inhibition behavior of schiff base compounds on mild steel in acidic media. ChemistrySelect 8(9):e202203231

    Article  CAS  Google Scholar 

  100. Kuraimid, Zaidoun K., Abd El-Aziz S. Fouda, and Dawood S. Abid. (2023) Static and Dynamic Study of Novel 4-Formyl-N-Hexadecyl-N, N-Dimethylbenzenaminium Bromide Synthesized as a Corrosion Inhibitor Use in Petroleum Wells Acidizing Process

  101. Saleh TA, Satria M, Nur MM, Aljeaban N, Alharbi Bader (2023) Synthesis of vinyl trimethyl silane and acrylic acid modified silica nanoparticles as corrosion inhibition protocols in saline medium. Fuel. https://doi.org/10.1016/j.fuel.2022.127277

    Article  Google Scholar 

  102. Akinlosotu Olawale Matthew, Akinlosotu Isaiah Ajibade, Adejoro Babatunde Temitope, Ogunyemi Babatunde Benjamin, Adeleke (2023) Synthesis, corrosion inhibition efficiency and adsorption behavior of dibenzo [a, c] quinoxalino (2, 3-I) Phenazine on mild steel in acidic medium. Am J Agril Sci Eng Technol 7(2):72–80

    Article  Google Scholar 

  103. Mandal S, Bej S, Banerjee P (2023) Insights into the uses of two azine decorated d10-MOFs for corrosion inhibition application on mild steel surface in saline medium: experimental as well as theoretical investigation. J Mol Liq 381:121789

    Article  CAS  Google Scholar 

  104. Wu J, Juan Wu, Lilin Lu, Mei P (2023) Design, characteristics, and theoretical analyses of 8-hydroxyquinoline derivatives with different heteroatoms as effective corrosion inhibitors. Mater Chem Phys 304:127929

    Article  CAS  Google Scholar 

  105. Al-Amiery AA, Yousif E, Isahak WNRW, Al-Azzawi WK (2023) A review of inorganic corrosion inhibitors: types, mechanisms, and applications. Tribol Ind 44(2):313

    Article  Google Scholar 

  106. Al-Amiery AA, Isahak WNRW, Al-Azzawi WK (2023) Corrosion inhibitors: natural and synthetic organic inhibitors. Lubricants 11(4):174

    Article  CAS  Google Scholar 

  107. Betti N, Al-Amiery AA, Al-Azzawi WK, Isahak WNRW (2023) Corrosion inhibition properties of schiff base derivative against mild steel in HCl environment complemented with DFT investigations. Sci Rep 13(1):8979

    Article  CAS  Google Scholar 

  108. Al-Amiery A, Isahak WNRW, Al-Azzawi WK (2023) Multi-method evaluation of a 2-(1, 3, 4-thiadiazole-2-yl) pyrrolidine corrosion inhibitor for mild steel in HCl: combining gravimetric, electrochemical, and DFT approaches. Sci Rep 13(1):9770

    Article  CAS  Google Scholar 

  109. Al-Amiery A (2023) Investigation of the corrosion inhibition properties of 4-Cyclohexyl-3-Thiosemicarbazide on Mild Steel in 1 M HCl Solution. Prog Color Colorants Coatings. https://doi.org/10.30509/PCCC.2023.167126.1212

    Article  Google Scholar 

  110. Al-Amiery AA, Betti N, Isahak WNRW, Al-Azzawi WK, Nik WMNW (2023) Exploring the effectiveness of isatin-schiff base as an environmentally friendly corrosion inhibitor for mild steel in hydrochloric acid. Lubricants 11(5):211

    Article  CAS  Google Scholar 

  111. Al-Amiery A, Isahak WNRW, Al-Azzawi WK (2023) ODHI: A promising isatin-based corrosion inhibitor for mild steel in hydrochloric acid. J Mol Str 1288:135829

    Article  CAS  Google Scholar 

  112. Aljibori HS, Abdulzahra OH, Al Adily AJ, Al-Azzawi WK, Al-Amiery AA, Kadhum AAH (2023) Corrosion inhibition effects of concentration of 2-oxo-3-hydrazonoindoline in acidic solution, exposure period, and temperature. Int J Corros Scale Inhib 12(2):438–457

    Google Scholar 

  113. Al-Edan AK, Isahak WNRW, Ramli ZAC, Al-Azzawi WK, Abdul AH, Kadhum HS, Jabbar Ahmed Al-Amiery (2023) Palmitic acid-based amide as a corrosion inhibitor for mild steel in 1M HCl. Heliyon 9(4):e14657

    Article  CAS  Google Scholar 

  114. Zhu Y, Shidong Qu, Shen Y, Liu X, Lai N, Dai Z, Liu J (2023) Investigation on the synergistic effects and mechanism of oleic imidazoline and mercaptoethanol corrosion inhibitors by experiment and molecular dynamic simulation. J Mol Struct 1274:134512

    Article  CAS  Google Scholar 

  115. Wang Y, Qiang Y, Zhi H, Ran B, Zhang D (2023) Evaluating the synergistic effect of maple leaves extract and iodide ions on corrosion inhibition of Q235 steel in H2SO4 solution. J Ind Eng Chem 117:422–433

    Article  CAS  Google Scholar 

  116. Ziouani A, Atia S, Hamani H, Douadi T, Al-Noaimi M, Gherraf N (2023) Molecular dynamic simulation and experimental investigation on the synergistic mechanism and synergistic effect of (1Z) N [2 (methylthio) phenyl] 2oxopropanehydrazonoyl chloride (S1) corrosion inhibitor on mild steel in acid medium1M HCl. J Indian Chem Soc 100(1):100832

    Article  CAS  Google Scholar 

  117. Anandkumar B, Krishna NG, Solomon RV, Nandakumar T, Philip J (2023) Synergistic enhancement of corrosion protection of carbon steels using corrosion inhibitors and biocides: Molecular adsorption studies, DFT calculations and long-term corrosion performance evaluation. J Environ Chem Eng 11(3):109842

    Article  CAS  Google Scholar 

  118. Kaya F, Solmaz R, Gecibesler IH (2023) Adsorption and corrosion inhibition capability of Rheum ribes root extract (Işgın) for mild steel protection in acidic medium: A comprehensive electrochemical, surface characterization, synergistic inhibition effect, and stability study. J Mol Liq 372:121219

    Article  CAS  Google Scholar 

  119. Vorobyova V, Skiba M, Dzhyndzhoian V, Linucheva O (2023) Evaluating the synergistic effect of peach pomace extract and organosilane on corrosion inhibition of steel in industrial water media. Inorg Chem Commun 153:110773

    Article  CAS  Google Scholar 

  120. Wang J, Zhao J, Tabish M, Peng L, Cheng Qi, Shi F (2023) Long-term corrosion inhibition for AA5052 aluminum alloy by an eco-friendly hybrid inhibitor: synergism inhibition between rosemary extract and zinc chloride in 0.05 M NaCl solution. J Ind Eng Chem 120:302–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support provided by Universiti Kebangsaan Malaysia (UKM) is acknowledged by the authors.

Funding

Universiti Kebangsaan Malaysia provided funding for a portion of the study.

Author information

Authors and Affiliations

Authors

Contributions

WKA: investigation, AAA: resources, AAA: writing—review and editing, AAA: visualization, WKA: supervision, WKA: project administration, WKA: funding acquisition, WKA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ahmed A. Al-Amiery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of Interest

The authors claim they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Amiery, A.A., Al-Azzawi, W.K. Organic Synthesized Inhibitors for Corrosion Protection of Carbon Steel: A Comprehensive Review. J Bio Tribo Corros 9, 74 (2023). https://doi.org/10.1007/s40735-023-00791-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00791-4

Keywords

Navigation