Skip to main content

Advertisement

Log in

Biocorrosion Behavior of Epoxy-Based Multilayer Nanocomposite Coatings

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Marine structures are prone to biocorrosion, so developing a suitable coating system to combat corrosion is essential. The present work is focused on the development of a multilayered epoxy-based nanocomposite (NC) coating system reinforced with ZnO filler in the first layer coat (NC1), ZnO and Cu2O in the second layer (NC2), and the third layer consisting of a varying percentage of TiO2 with 5 wt%, 10 wt%, and 15 wt% of TiO2 designated as NC3, NC4, and NC5, respectively, as top coat on the bare steel. Brush coating was employed to fabricate the coatings. Surface morphology and mechanical properties, wettability, corrosion, and biocorrosion behavior of the bare steel and coated substrates were examined. Mechanical properties such as linear scratch hardness and posi adhesion test values of the coatings were found to be in the order NC1 < NC2 < NC3 < NC4 < NC5. The NC3-coating system comprising three layers of coating reinforced with 5 wt% TiO2 imparting hydrophobicity offered maximum resistance to microbial adhesion with 93% and 91% reduction in corrosion rate than the bare metal in natural and artificial seawater, respectively, after the 7th day of immersion. The bacterial and fungal cell counts in the biofilm after the 7th day of immersion were reduced by four and three orders of magnitude, respectively, in the nanocomposite against the bare substrate providing good biofouling resistance. NC3 coating also prevented the release of metal ions into the seawater and acted as a barrier for the leaching of metals from the coating underneath, thus, proving to be safe for the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Safavi MS, Fathi M, Charkhesht V, Jafarpour M, Ahadzadeh I (2020) Electrodeposition of Co–P coatings reinforced by MoS2 + Y2O3 hybrid ceramic nanoparticles for corrosion-resistant applications: influences of operational parameters. Metall Mater Trans A Phys Metall Mater Sci 51(12):6740–6758. https://doi.org/10.1007/s11661-020-05987-8

    Article  CAS  Google Scholar 

  2. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2003.06.001

    Article  Google Scholar 

  3. Abubakar A, Mustafa MB, Johari WLW, Zulkifli SZ, Yusuff FBM (2016) Tributyltin (TBT) tolerance of indigenous and non-indigenous bacterial species. Water Air Soil Pollut. https://doi.org/10.1007/s11270-016-2946-4

    Article  Google Scholar 

  4. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201(6):3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129

    Article  CAS  Google Scholar 

  5. Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) On coating techniques for surface protection: a review. J Manuf Mater Process. https://doi.org/10.3390/jmmp3010028

    Article  Google Scholar 

  6. Ren Y et al (2021) A review on tribology of polymer composite coatings. Friction. https://doi.org/10.1007/s40544-020-0446-4

    Article  Google Scholar 

  7. Yi G, Riduan N, Yuan Y (2019) Microbicide surface nano-structures. Crit Rev Biotechnol 39(7):964–979

    Article  CAS  Google Scholar 

  8. Fathi M, Safavi MS, Mirzazadeh S, Ansariyan A, Ahadzadeh I (2020) A promising horizon in mechanical and corrosion properties improvement of Ni–Mo coatings through incorporation of Y2O3 nanoparticles. Metall Mater Trans A Phys Metall Mater Sci 51(2):897–908. https://doi.org/10.1007/s11661-019-05559-5

    Article  CAS  Google Scholar 

  9. Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind turbine performance. Renew Sustain Energy Rev 13(2):428–438. https://doi.org/10.1016/j.rser.2007.11.009

    Article  Google Scholar 

  10. Safavi MS, Rasooli A, Sorkhabi FA (2020) Electrodeposition of Ni–P/Ni–Co–Al2O3 duplex nanocomposite coatings: towards improved mechanical and corrosion properties. Trans Inst Met Finish 98(6):1–9. https://doi.org/10.1080/00202967.2020.1802106

    Article  CAS  Google Scholar 

  11. Xu G, Pranantyo D, Xu L, Neoh KG, Kang ET, Teo SLM (2016) Antifouling, antimicrobial, and antibiocorrosion multilayer coatings assembled by layer-by-layer deposition involving host–guest interaction. Ind Eng Chem Res 55(41):10906–10915. https://doi.org/10.1021/acs.iecr.6b02190

    Article  CAS  Google Scholar 

  12. Khadem M, Penkov OV, Yang HK, Kim DE (2017) Tribology of multilayer coatings for wear reduction: a review. Friction 5(3):248–262. https://doi.org/10.1007/s40544-017-0181-7

    Article  CAS  Google Scholar 

  13. Alhumade H, Yu A, Elkamel A, Simon L, Abdala A (2016) Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Express Polym Lett 10(12):1034–1046. https://doi.org/10.3144/expresspolymlett.2016.96

    Article  CAS  Google Scholar 

  14. CaderMhdHaniffa MA, Ching YC, Abdullah LC, Poh SC, Chuah CH (2016) Review of bionanocomposite coating films and their applications. Polymers (Basel) 8(7):1–33. https://doi.org/10.3390/polym8070246

    Article  CAS  Google Scholar 

  15. Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coatings Technol Res 6(2):135–176. https://doi.org/10.1007/s11998-008-9144-2

    Article  CAS  Google Scholar 

  16. Fathi M et al (2021) Co–P alloy matrix composite deposits reinforced by nano-MoS2 solid lubricant: an alternative tribological coating to hard chromium coatings. Tribol Int 159:106956. https://doi.org/10.1016/j.triboint.2021.106956

    Article  CAS  Google Scholar 

  17. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409. https://doi.org/10.1016/j.msec.2016.08.041

    Article  CAS  Google Scholar 

  18. Rodríguez-Llamazares S, Mondaca MA, Badilla C, Maldonado A (2012) PVC/copper oxide composites and their effect on bacterial adherence. J Chil Chem Soc. https://doi.org/10.4067/S0717-97072012000200022

    Article  Google Scholar 

  19. Rasooli A, Safavi MS, Ahmadiyeh S, Jalali A (2020) Evaluation of TiO2 nanoparticles concentration and applied current density role in determination of microstructural, mechanical, and corrosion properties of Ni–Co alloy coatings. Prot Met Phys Chem Surf 56(2):320–327. https://doi.org/10.1134/S2070205120020215

    Article  CAS  Google Scholar 

  20. Shen GX, Chen YC, Lin L, Lin CJ, Scantlebury D (2005) Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim Acta 50(25–26):5083–5089. https://doi.org/10.1016/j.electacta.2005.04.048

    Article  CAS  Google Scholar 

  21. Zhang X et al (2016) Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium. Ceram Int 42(15):17095–17100. https://doi.org/10.1016/j.ceramint.2016.07.220

    Article  CAS  Google Scholar 

  22. Buhl KB, Agergaard AH, Lillethorup M, Nikolajsen JP, Pedersen SU, Daasbjerg K (2020) Polymer brush coating and adhesion technology at scale. Polymers (Basel) 12(7):1–15. https://doi.org/10.3390/polym12071475

    Article  CAS  Google Scholar 

  23. Videla HA (1994) Biofilms and corrosion interactions on stainless steel in seawater. Int Biodeterior Biodegrad 34(3–4):245–257. https://doi.org/10.1016/0964-8305(94)90086-8

    Article  CAS  Google Scholar 

  24. Morris AJ, Byrne TC, Madden JF, BarthReller L (1996) Duration of incubation of fungal cultures. J Clin Microbiol 34(6):1583–1585. https://doi.org/10.1128/jcm.34.6.1583-1585.1996

    Article  CAS  Google Scholar 

  25. Li Y, Luo B, Guet C, Narasimalu S, Dong Z (2019) Preparation and formula analysis of anti-biofouling titania-polyurea spray coating with nano/micro-structure. Coatings. https://doi.org/10.3390/coatings9090560

    Article  Google Scholar 

  26. Madhup MK, Shah NK, Parekh NR (2017) The effect of zinc oxide nanoparticles on cohesive and adhesive bond of epoxy/amine coating on carbon steel substrate. IOSR J Appl Chem 10(7):47–58. https://doi.org/10.9790/5736-1007024758

    Article  CAS  Google Scholar 

  27. Ghosal A, Ahmad S (2017) High performance anti-corrosive epoxy-titania hybrid nanocomposite coatings. New J Chem 41(11):4599–4610. https://doi.org/10.1039/c6nj03906e

    Article  CAS  Google Scholar 

  28. Sahoo BN, Kandasubramanian B, Thomas A (2013) Effect of TiO2 powder on the surface morphology of micro/nanoporous structured hydrophobic fluoropolymer based composite material. J Polym 2013:1–4. https://doi.org/10.1155/2013/615045

    Article  Google Scholar 

  29. Little BJ, Lee JS (2015) Microbiologically influenced corrosion. In: Oil and gas pipelines: integrity and safety handbook. Wiley, New York, pp 387–398. https://doi.org/10.1002/9781119019213.ch27

  30. Eberl HJ, Sudarsan R (2008) Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. J Theor Biol 253:788–807. https://doi.org/10.1016/j.jtbi.2008.04.013

    Article  Google Scholar 

  31. Dunsmore BC, Jacobsen A, Hall-Stoodley L, Bass CJ, Lappin-Scott HM, Stoodley P (2002) The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29(6):347–353. https://doi.org/10.1038/sj.jim.7000302

    Article  CAS  Google Scholar 

  32. Marmur A (2006) Super-hydrophobicity fundamentals: implications to biofouling prevention. Biofouling. https://doi.org/10.1080/08927010600562328

    Article  Google Scholar 

  33. Jagtap RN, Patil PP, Hassan SZ (2008) Effect of zinc oxide in combating corrosion in zinc-rich primer. Prog Org Coat 63(4):389–394. https://doi.org/10.1016/j.porgcoat.2008.06.012

    Article  CAS  Google Scholar 

  34. Oparaodu KO, Okpokwasili GC (2014) Comparison of percentage weight loss and corrosion rate trends in different metal coupons from two soil environments. Int J Environ Bioremed Biodegrad 2(5):243–249

    Google Scholar 

  35. Jagtap RN, Patil PP, Hassan SZ (2008) Effect of zinc oxide in combating corrosion in zinc-rich primer. Prog Org Coatings 63(4):389–394. https://doi.org/10.1016/j.porgcoat.2008.06.012

    Article  CAS  Google Scholar 

  36. Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. https://doi.org/10.1016/j.tim.2008.11.001

    Article  Google Scholar 

  37. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Anand Kumar B, VaradaRajalu A (2018) Development of polymer nanocomposites using cellulose/silver for antifouling applications: a preliminary investigations of silver-coated cellulose composite film for antifouling applications. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-08-102262-7.00014-3

    Book  Google Scholar 

  38. Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43(6):1–8. https://doi.org/10.2166/wst.2001.0326

    Article  CAS  Google Scholar 

  39. Zhang X et al (2018) Effects of copper nanoparticles in porous TiO2 coatings on bacterial resistance and cytocompatibility of osteoblasts and endothelial cells. Mater Sci Eng C 82:110–120. https://doi.org/10.1016/j.msec.2017.08.061

    Article  CAS  Google Scholar 

  40. Morán G, Méallet-Renault R (2018) Superhydrophobic surfaces toward prevention of biofilm-associated infections. In: Bacterial pathogenesis and antibacterial control. InTechOpen, London. https://doi.org/10.5772/intechopen.72038.

  41. Selim MS, Yang H, Wang FQ, Fatthallah NA, Huang Y, Kuga S (2019) Silicone/ZnO nanorod composite coating as a marine antifouling surface. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.10.004

    Article  Google Scholar 

  42. Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M (2019) Antimicrobial activity of titanium dioxide and zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. https://doi.org/10.1038/s41598-019-54025-0

    Article  Google Scholar 

  43. Kubacka A et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. https://doi.org/10.1038/srep04134

    Article  Google Scholar 

  44. Adeleye AS, Oranu EA, Tao M, Keller AA (2016) Release and detection of nanosized copper from a commercial antifouling paint. Water Res 102:374–382. https://doi.org/10.1016/j.watres.2016.06.056

    Article  CAS  Google Scholar 

  45. Janczarek M, Endo M, Zhang D, Wang K, Kowalska E (2018) Enhanced photocatalytic and antimicrobial performance of cuprous oxide/titania: the effect of titania matrix. Materials (Basel). https://doi.org/10.3390/ma11112069

    Article  Google Scholar 

  46. Wang G, Weng D, Chen C, Chen L, Wang J (2020) Influence of TiO2 nanostructure size and surface modification on surface wettability and bacterial adhesion. Colloids Interface Sci Commun 34:100220. https://doi.org/10.1016/j.colcom.2019.100220

    Article  CAS  Google Scholar 

  47. Kamei G (2018) Effects of nano-particles titanium dioxide (TiO2) on bio-fouling in estuarine environment. Indian J Geo-Marine Sci 47(5):1047–1049

    Google Scholar 

Download references

Funding

No funding from any organization. The research work is outcome of master research project of Preethi Shetty.

Author information

Authors and Affiliations

Authors

Contributions

PS: experimental work, design of work, manuscript preparations, SBA: design of work, technical discussion, manuscript preparations, and revisions. VSK: Design of work, technical discussion, manuscript preparations, and revisions.

Corresponding author

Correspondence to Shashi Bhushan Arya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, P., Arya, S.B. & Kodialbail, V.S. Biocorrosion Behavior of Epoxy-Based Multilayer Nanocomposite Coatings. J Bio Tribo Corros 9, 45 (2023). https://doi.org/10.1007/s40735-023-00763-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-023-00763-8

Keywords

Navigation