Skip to main content

Advertisement

Log in

The Effect of Ni Content on the Corrosion Resistance of Some Fe–Cr–Ni Alloys in Simulated Body Fluids in the Presence of H2O2 and Albumin

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

The stainless steel alloys are greatly utilized for human orthopaedic and implants. The electrochemical behaviour of the stainless steel of Fe–17Cr–xNi alloys (x = 8, 10, 14) has been studied in simulated body fluid containing H2O2 and albumin at 37 °C. The electrochemical behaviour of the Fe–17Cr–8Ni, Fe–17Cr–10Ni and Fe–17Cr–14Ni has been investigated using the potentiodynamic polarization and electrochemical impedance spectroscopy, EIS. The surface morphology of the three alloys was examined before and after immersion in the simulated body fluid containing H2O2 and albumin using scanning electron microscope. The elemental composition of the oxide layer formed on the surface of the alloys after immersion in the electrolyte was obtained using energy dispersive X-ray analysis, EDX, technique. The metals released into the electrolyte has been determined using atomic absorption spectrophotometry. The EIS and potentiodynamic polarization results demonstrate that the Fe–Cr–14Ni alloy attains highest polarization resistance and the smallest rate of corrosion than Fe–17Cr–8Ni and Fe–17Cr–10Ni alloys. Fe–17Cr–14Ni is slightly influenced by immersion in simulated body fluid containing H2O2 and albumin which is confirmed by SEM images and metal release via formation of protective passive film. The surface analysis has shown the participation of the different alloying elements in the passive film.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gurappa I (2002) Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact 49:73–79

    Article  CAS  Google Scholar 

  2. Narayan RJ. ASM handbook, Volume 23—materials for medical devices. ASM International.

  3. Souto RM, Mirza Rosca IC, Gonzales S (2001) Resistance to localized corrosion of passive films on a duplex stainless steel. Corros Sci Sect 57:300–306

    Article  CAS  Google Scholar 

  4. Bernard F, Rao VS, Kwon HS (2005) A study on the repassivation kinetics and SCC behavior of duplex stainless steel in chloride solution. J Electrochem Soc 152:415–420

    Article  CAS  Google Scholar 

  5. Torres FJ, Panyayong W, Rogers W, Velasquez-Plata D, Oshida Y, Moore BK (1998) Corrosion behavior of sensitized duplex stainless steel. Bio-Med Mat Eng 8:25–36

    CAS  Google Scholar 

  6. Donik KA, Jenko M (2007) Electrochemical and XPS studies of the passive film formed on stainless steels in borate buffer and chloride solutions. Corros Sci 49:2083–2098

    Article  CAS  Google Scholar 

  7. Oh KT, Kim YS, Park YS, Kim KN (2004) Properties of super stainless steels for orthodontic applications. J Biomed Mater Res 69B:183–194

    Article  CAS  Google Scholar 

  8. Burstein GT, Liu C (2007) Effect of zirconium content on the microstructure and corrosion behavior of Ti-6Al-4V-xZr alloys. Corros Sci 49:4296–4306

    Article  CAS  Google Scholar 

  9. Hansen D (2008) Metal corrosion in the human body the ultimate biocorrosion scenario. Electrochem Soc Interface 17:31–34

    CAS  Google Scholar 

  10. George G, Shaikh H (2002) Introduction to austenitic stainless steels. In: Khatak HS, Raj B (eds) Corrosion of austenitic stainless steels, mechanism, mitigation and monitoring. Woodhead Publishing House, Cambridge, UK

    Google Scholar 

  11. Sedriks AJ (1996) Corrosion of stainless steels, 2nd edn. Wiley, New York

    Google Scholar 

  12. Asri RIM, Harun WSW, Samykano M, Lah NAC, Ghani SAC, Tarlochan F, Raza MR (2017) Corrosion behavior of dental alloys processed by laser-based additive manufacturing procedures. Mater Sci Eng C 77:1261–1274

    Article  CAS  Google Scholar 

  13. Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752

    Article  CAS  Google Scholar 

  14. Oh YJ, Hong JH (2000) Nitrogen effect on precipitation and sensitization in cold-worked Type 316L (N) stainless steels. J Nucl Mater 278:242–250

    Article  CAS  Google Scholar 

  15. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  Google Scholar 

  16. Test ST, Weiss SJ (1984) Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils. J Biol Chem 259:399–405

    CAS  Google Scholar 

  17. Battino M, Bullon P, Wilson M, Oral H (1999) Newman Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Biol Med 10:458–476

    CAS  Google Scholar 

  18. Fonseca-Garcia A, Perez-Alvarez J, Barrera CC, Medina JC, Almaguer-Flores A, Sanchez RB, Rodil SE (2016) The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials. Mater Sci Eng C 66:119–129

    Article  CAS  Google Scholar 

  19. Rudee M, Price TM (1985) The initial stages of adsorption of plasma derived proteins on artificial surfaces in a controlled flow environment. J Biomed Mater Res 19:57–66

    Article  CAS  Google Scholar 

  20. Omanovic S, Roscoe SG (1999) Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel. Langmuir 15:8315–8321

    Article  CAS  Google Scholar 

  21. Afonso M, Jaimes R, Areas EPG, Capri MR, Oliveira E, Agostinho SML (2008) The influence of albumin on the anodic dissolution of chromium present in UNS S31254 stainless steel in chloride environment. Colloid Surf A 317:760–763

    Article  CAS  Google Scholar 

  22. Costa D, Garrain PA, Diawara B, Marcus P (2011) Biomolecule−biomaterial interaction: A DFT-D study of glycine adsorption and self-assembly on hydroxylated Cr2O3 surfaces. Langmuir 27(6):2747–2760

    Article  CAS  Google Scholar 

  23. Rubio C, Costa D, Bellon-Fontaine MN, Relkin P, Pradier CM, Marcus P (2002) Characterization of bovine serum albumin adsorption on chromium and AISI 304 stainless steel, consequences for the Pseudomonas fragi K1 adhesion. Colloid Surf B 24(3–4):193–205

    Article  CAS  Google Scholar 

  24. Hedberg Y, Killian MS, Blomberg E, Virtanen S, Schmuki P, Odnevall Wallinder I (2012) Interaction of bovine serum albumin and lysozyme with stainless steel studied by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. Langmuir 28(47):16306–16317

    Article  CAS  Google Scholar 

  25. Woodman JL, Black J, Jiminez SA (1984) Isolation of serum protein organometallic corrosion products from 316LSS and HS-21 in vitro and in vivo. J Biomed Mater Res 18(1):99–114

    Article  CAS  Google Scholar 

  26. Kocijan A, Milosˇev I, Pihlar B (2003) The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. J Mater Sci Mater Med 14(1):69–77

    Article  CAS  Google Scholar 

  27. Milosˇev I (2002) Electrochemical study of Co-based alloys in simulated physiological solution. J Appl Electrochem 32(3):311–320

    Article  Google Scholar 

  28. Zhang F, Pan J, Claesson PM (2011) Electrochemical and AFM studies of mussel adhesive protein (Mefp-1) as corrosion inhibitor for carbon steel. Electrochim Acta 56(3):1636–1645

    Article  CAS  Google Scholar 

  29. Hansen DC, Luther GW, Waite JH (1994) The adsorption of the adhesive protein of the blue mussel mytilus edulis L onto type 304L stainless steel. J Colloid Interface Sci 168:206–216

    Article  CAS  Google Scholar 

  30. Karimi S, Nickchi T, Alfantazi AM (2012) Long-term corrosion investigation of AISI 316L, Co–28Cr–6Mo, and Ti–6Al–4V alloys in simulated body solutions. Appl Surf Sci 258:6087–6096

    Article  CAS  Google Scholar 

  31. Karimi S, Alfantazi AM (2014) A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V Mater. Sci Eng C 40:435–444

    Article  CAS  Google Scholar 

  32. Virtanen S, Milosev I, Gomez-Barrena E, Trebse R, Salo J, Konttinen YT (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4:468–476

    Article  CAS  Google Scholar 

  33. Porcayo-Calderon J, Casales-Diaz M, Salinas-Bravo VM, Martinez-Gomez L (2015) Corrosion performance of Fe-Cr-Ni alloys in artificial saliva and mouthwash solution. Bioinorg Chem Appl 2015:1–14

    Article  CAS  Google Scholar 

  34. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Article  CAS  Google Scholar 

  35. Hedberg Y, Wang X, Hedberg J, Lundin M, Blomberg E, Wallinder IO (2013) Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. J Mater Sci 24:1015–1033

    CAS  Google Scholar 

  36. Brooks E, Tobias M, Krautsak K, Ehrensberger M (2014) The influence of cathodic polarization and simulated inflammation on titanium electrochemistry. Appl Biomater 1028(7):1445–1452

    Google Scholar 

  37. Brooks EK, Der S, Ehrensberger MT (2016) Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions. Mater Sci Eng C 60:427–436

    Article  CAS  Google Scholar 

  38. Oyane A, Kim H-M, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003) Preparation and assessment of revised simulated body fluids. J Biomed Mater Res 65A:188–195

    Article  CAS  Google Scholar 

  39. Dean SW (1971) Handbook on corrosion testing and evaluation. Wiley, New York, p 171

    Google Scholar 

  40. Badawy WA, El-Rabiee MM, Helal NH, Nady H (2010) Effect of nickel content on the electrochemical behavior of Cu-Al-Ni alloys in chloride free neutral solution. Electrochim Acta 56:913–918

    Article  CAS  Google Scholar 

  41. Nie FL, Wang SG, Wang YB (2011) Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel. Dental Mater 27:677–683

    Article  CAS  Google Scholar 

  42. Alves VA, Souza DG, Reis RQ (2009) Electrochemical impedance applied to the corrosion behavior of dental amalgams in synthetic physiological fluids. Ciência & Tecnologia dos Materiais 21:36–43

    Google Scholar 

  43. Hassan N, Abdel Ghany NA (2017) Corrosion of biomaterials: anodic treatment and evaluation of 316L stainless steel in simulated body fluid. Corros Eng Sci Technol 52(4):267–275

    Article  CAS  Google Scholar 

  44. Abreu CM, Cristóbal MJ, Losada R, Nóvoa XR, Pena G, Pérez MC (2004) High frequency impedance spectroscopy study of passive films formed on AISI 316 stainless steel in alkaline medium. J Electroanal Chem 572:335–345

    Article  CAS  Google Scholar 

  45. Abreu CM, Cristóbal MJ, Nóvoa XR, Pena G, Pérez MC (2002) Synthesis, characterisation and electrochemical behaviour of Cu(II), Co(II), Ni(II) and Zn(II) complexes derived from acetylacetone and p-anisidine and their antimicrobial activity. Electrochim Acta 47:2215–2223

    Article  CAS  Google Scholar 

  46. Abreu CM, Cristóbal MJ, Nóvoa XR, Pena G, Pérez MC (2002) XPS study of passive films generated on AISI 430 ferritic stainless steel implanted with nitrogen and chromium plus nitrogen. Rev Metal 38:315

    Article  CAS  Google Scholar 

  47. Tang Y-C, Katsuma S, Fujimoto S, Hiromoto S (2006) Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomater 2:709–715

    Article  Google Scholar 

  48. Badawy WA, El-Rabiei MM, Nady H (2014) Synergistic effects of alloying elements in Cu-ternary alloys in chloride solutions. Electrochim Acta 120:39

    Article  CAS  Google Scholar 

  49. Song G, Bowles AL, St John DH (2004) Corrosion resistance of aged die cast magnesium alloy AZ91D. Mater Sci Eng A 366:74–86

    Article  CAS  Google Scholar 

  50. Ismail KM, Fathi AM, Badawy WA (2004) The influence of Ni content on the stability of copper—nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34:823–831

    Article  CAS  Google Scholar 

  51. Milosev I, Metikos MH (1997) The behaviour of Cu-xNi (x = 10 to 40 wt%) alloys in alkaline solutions containing chloride ions. Electrochim Acta 42:1537–1548

    Article  CAS  Google Scholar 

  52. Blundy RG, Pryor MJ (1972) The potential dependence of reaction product composition on copper-nickel alloys. Corros Sci 12:65–75

    Article  CAS  Google Scholar 

  53. Weichen Xu, Fei Yu, Yang L, Zhang B, Hou B, Li Y (2018) Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin. Mater Sci Eng C 92:11–19

    Article  CAS  Google Scholar 

  54. Hanawa T, Hiromoto S, Yamamoto A, Kuroda D, Asami K (2002) Characterization of the surface oxide film on an Fe-Cr-Mo-N system alloy in environments simulating the human body. Mater Trans 43:3088–3092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. El-Rabiei, Mosaad Negem or H. Nady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Rabiei, M.M., Bahrawy, A., El-Feky, H.E. et al. The Effect of Ni Content on the Corrosion Resistance of Some Fe–Cr–Ni Alloys in Simulated Body Fluids in the Presence of H2O2 and Albumin. J Bio Tribo Corros 6, 52 (2020). https://doi.org/10.1007/s40735-020-00350-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00350-1

Keywords

Navigation