Skip to main content
Log in

Effects of Levamisole on Cocaine Self-Administration by Rats

  • Original Article
  • Published:
The Psychological Record Aims and scope Submit manuscript

Abstract

Levamisole (LVM) is often added to illicit cocaine, but the reason for this is unclear. Previous research indicated that LVM sometimes increases the rewarding effects of cocaine, as measured by conditioned place preference. The present study examined the acute effects of LVM pretreatments on cocaine self-administration by rats. If LVM substantially increases the amount of cocaine self-administration in each bout, this effect could account for its use as an adulterant. Thirty-two catheterized rats were trained to self-administer cocaine (0.56 mg/kg/injection) and were subsequently tested after pretreatment with LVM (1 and 10 mg/kg) for self-administration of the training dose of cocaine and for self-administration of other doses (0–1.0 mg/kg/injection). Pretreatment with 10 mg/kg of LVM produced a statistically significant reduction in cocaine self-administration. Fewer cocaine-reinforced responses also occurred when 1 mg/kg of LVM was administered compared with control (no LVM) conditions, but the difference was not statistically significant. Because LVM never increased cocaine intake, the present data do not support the hypothesis that LVM is added to illicit cocaine to increase the amount of cocaine self-administered in each bout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul-Karim, R., Ryan, C., Rangel, C., & Emmett, M. (2013). Levamisole-induced vasculitis. Baylor University Medical Center Proceedings, 26(2), 163–165.

    PubMed  PubMed Central  Google Scholar 

  • Adams, J. G. (1978). Pharmacokinetics of levamisole. The Journal of Rheumatology, 4, 137–142.

    PubMed  Google Scholar 

  • Amery, W. K. P., & Bruynseels, P. J. M. (1992). Levamisole, the story and the lessons. International Journal of Immunopharmacology, 14, 481–486.

    Article  PubMed  Google Scholar 

  • Balster, R. L., & Lukas, S. (1985). Review of self-administration. Drug and Alcohol Dependence, 14(3–4), 249–261.

    Article  PubMed  Google Scholar 

  • Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31–43.

    Article  PubMed  Google Scholar 

  • Barrett, A. C., Miller, J. R., Dohrmann, J. M., & Caine, S. B. (2004). Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology, 47, 256–273.

    Article  PubMed  Google Scholar 

  • Boggiano, M. M., Cavigelli, S. A., Dorsey, J. R., Kelley, C. E. P., Ragan, C. M., & Chandler-Laney, P. C. (2008). Effect of a cage divider permitting social stimuli on stress and food intake in rats. Physiology and Behavior, 95(1–2), 222–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozarth, M. A. (1987). Conditioned place preference: A parametric analysis using systemic heroin injections. In M. A. Bozarth (Ed.), Methods of assessing the reinforcing properties of abused drugs (pp. 241–273). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Briscoe, R. J., Vanecek, S. A., Vallett, M., Baird, T. J., Holloway, F. A., & Gauvin, D. V. (1996). Reinforcing effects of caffeine, ephedrine, and their binary combinations in rats. Pharmacology, Biochemistry, and Behavior, 60, 685–693.

    Article  Google Scholar 

  • Callahan, P. M., de La Garza, R., II, & Cunningham, K. A. (1997). Mediation of the discriminative stimulus properties of cocaine by mesocorticolimbic dopamine systems. Pharmacology, Biochemistry, and Behavior , 57, 601–607.

  • Carr, G. D., Fibiger, H. C., & Phillips, A. G. (1989). Conditioned place preference as a measure of drug reward. In J. M. Liebman & S. J. Cooper (Eds.), The neuropharmacological basis of reward (pp. 66–105). Oxford: Clarendon Press.

    Google Scholar 

  • Casale, E. M., & Casale, J. F. (2011). Identification of levamisole and lidocaine acetylation reaction impurities found in heroin exhibits. Microgram Journal, 8(1), 16–23.

    Google Scholar 

  • Casale, J. F., Corbeil, E. M., & Hays, P. A. (2008). Identification of levamisole impurities found in illicit cocaine exhibits. Microgram Journal, 6(3–4), 82–89.

    Google Scholar 

  • Chitwood, D. D. (1985). Patterns and consequences of cocaine use. In N. J. Kozel & E. H. Adams (Eds.), Cocaine use in America: Epidemiologic and clinical perspectives (pp. 111–129). Rockville: U.S. Department of Health and Human Services.

    Google Scholar 

  • Craft, R. M., & Stratmann, J. A. (1996). Discriminative stimulus effects of cocaine in female versus male rats. Drug and Alcohol Dependence, 42(1), 27–37.

    Article  PubMed  Google Scholar 

  • Crombag, H. S., Ferrario, C. R., & Robinson, T. E. (2008). The rate of intravenous cocaine or amphetamine delivery does not influence drug-taking and drug-seeking behavior in rats. Pharmacology, Biochemistry, and Behavior, 90, 797–804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Formeister, E. J., Falcone, M. T., & Mair, E. A. (2015). Facial cutaneous necrosis associated with suspected levamisole toxicity from tainted cocaine abuse. The Annals of Otology, Rhinology, and Laryngology, 124, 30–34.

    Article  PubMed  Google Scholar 

  • Gauvin, D. V., Guha, M., & Baird, T. J. (2015). Rat self-administration. In C. G. Margraf, T. J. Hudzik, & D. R. Compton (Eds.), Nonclinical assessment of abuse potential for new pharmaceuticals (pp. 49–80). London: Elsevier.

    Chapter  Google Scholar 

  • Goldberg, S. R., Woods, J. H., & Schuster, C. R. (1971). Nalorphine-induced changes in morphine self-administration in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics, 176, 464–471.

    PubMed  Google Scholar 

  • Hess, C., Ritke, N., Broecker, S., Madea, B., & Musshoff, F. (2013). Metabolism of levamisole and kinetics of levamisole and aminorex in urine by means of LC-QTOF-HRMS and LC-QqQ-MS. Analytical and Bioanalytical Chemistry, 405, 4077–4088.

    Article  PubMed  Google Scholar 

  • Hofmaier, T., Luf, A., Seddik, A., Stockner, T., Holy, M., Freissmuth, M., . . . Kudlacek, O. (2014). Aminorex, a metabolite of the cocaine adulterant levamisole, exerts amphetamine like actions at monoamine transporters. Neurochemistry International, 73, 32–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamey, C., Kintz, P., & Raul, J.-S. (2016). Levamisole and cocaine: An association to follow-up. Toxicologie Analytique et Clinique, 28, 64–70.

    Article  Google Scholar 

  • Jiménez-González, A., Ros-Moreno, R. M., Moreno-Guzmán, M. J., & Rodríguez-Caabeiro, F. (1998). Characterization of levamisole binding sites in Trichinella spiralis. Parasitology Research, 84, 757–759.

    Article  PubMed  Google Scholar 

  • Knowles, L., Buxton, J. A., Skuridina, N., Achebe, I., LeGatt, D., Fan, S., . . . Talbot, J. (2009). Levamisole tainted cocaine causing severe neutropenia in Alberta and British Columbia. Harm Reduction Journal, 6, 1–7.

    Article  Google Scholar 

  • Lamas, X., Negus, S. S., Gatch, M. B., & Mello, N. K. (1998). Effects of heroin/cocaine combinations in rats trained to discriminate heroin or cocaine from saline. Pharmacology Biochemistry and Behavior, 60, 357–364.

    Article  Google Scholar 

  • Mello, N. K., & Negus, S. S. (1996). Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology, 14, 375–424.

    Article  PubMed  Google Scholar 

  • Mello, N. K., & Newman, J. L. (2011). Discriminative and reinforcing stimulus effects of nicotine, cocaine, and cocaine + nicotine combinations in rhesus monkeys. Experimental and Clinical Psychopharmacology, 19, 203–214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaud, K., Grabherr, S., Shiferaw, K., Doenz, F., Augsburger, M., & Mangin, P. (2014). Acute coronary syndrome after levamisole-adulterated cocaine abuse. Journal of Forensic and Legal Medicine, 21, 48–52.

    Article  PubMed  Google Scholar 

  • National Research Council. (2011). Guide for the care and use of laboratory animals. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Onuaguluchi, G., & Igbo, I. N. (1990). Electrocardiographic changes induced by levamisole hydrochloride in the rat. Archives Internationales de Pharmacodynamie et de Thérapie, 305, 55–62.

    PubMed  Google Scholar 

  • Panlilio, L. V., & Goldberg, S. R. (2007). Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction, 102, 1863–1870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panlilio, L. V., Goldberg, S. R., Gilman, J. P., Jufer, R., Cone, E. J., & Schindler, C. W. (1998). Effects of delivery rate and non-contingent infusion of cocaine self-administration in rhesus monkeys. Psychopharmacology, 137, 253–258.

    Article  PubMed  Google Scholar 

  • Pickens, R., & Thompson, T. (1968). Cocaine-reinforced behavior in rats: Effects of reinforcement magnitude and fixed-ratio size. Journal of Pharmacology and Experimental Therapeutics, 161, 122–129.

    PubMed  Google Scholar 

  • Poling, A., Lotfizadeh, A., & Edwards, T. L. (2017). Predicting reinforcement: Utility of the motivating operations concept. The Behavior Analyst, 40, 49–56. https://doi.org/10.1007/s40614-017-0091-z.

    Article  Google Scholar 

  • Roberts, D. C. S., Loh, E. A., & Vickers, G. (1989). Self-administration of cocaine on a progressive ratio schedule in rats: Dose-response relationship and effect of haloperidol pretreatment. Psychopharmacology, 97, 535–538.

    Article  PubMed  Google Scholar 

  • Robertson, A. P., Bjorn, H. E., & Martin, R. J. (1999). Resistance to levamisole resolved at the single-channel level. FASEB Journal, 13, 749–760.

    PubMed  Google Scholar 

  • Siciliano, C. A., Ferris, M. J., & Jones, S. R. (2015). Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. European Journal of Neuroscience, 42, 2091–2096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spector, S., Munjal, I., & Schmidt, D. E. (1998). Effects of the immunostimulant, levamisole, on opiate withdrawal and levels of endogenous opiate alkaloids and monoamine neurotransmitters in rat brain. Neuropsychopharmacology, 19, 417–427.

    Article  PubMed  Google Scholar 

  • Swerdlow, N. R., Gilbert, D., & Koob, G. F. (1989). Conditioned drug effects on spatial preference: Critical evaluation. In A. A. Boulton, G. B. Baker, & A. J. Greenshaw (Eds.), Neuromethods: Psychopharmacology (Vol. 13, pp. 399–446). Clifton: Humana Press.

    Chapter  Google Scholar 

  • Tallarida, R. J. (2000). Drug synergism and dose-effect data analysis. Boca Raton: Chapman & Hall/CRC Press.

    Book  Google Scholar 

  • Tallarida, C. S., Egan, E., Alejo, G. D., Raffa, R., Tallarida, R. J., & Rawls, S. M. (2014). Levamisole and cocaine synergism: A prevalent adulterant enhances cocaine’s action in vivo. Neuropharmacology, 79, 590–595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallarida, R. J., Porreca, F., & Cowan, A. (1989). Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sciences, 45, 947–961.

    Article  PubMed  Google Scholar 

  • Tallarida, C. S., Tallarida, R. J., & Rawls, S. M. (2015). Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats. Drug and Alcohol Dependence, 149, 145–150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomsen, M. (2014). Locomotor activating effects of cocaine and scopolamine combinations in rats: Isobolographic analysis. Behavioural Pharmacology, 25, 259–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tzschentke, T. M. (1998). Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Progress in Neurobiology, 56, 613–672.

    Article  PubMed  Google Scholar 

  • United States Department of Justice. (2002). Federal cocaine offenses: An analysis of crack and powder penalties. Retrieved from https://www.justice.gov/archive/olp/pdf/crack_powder2002.pdf

  • United States Substance Abuse and Mental Health Services Administration. (2009). Nationwide public health alert issued concerning life-threatening risk posed by cocaine laced with veterinary anti-parasite drug (Press release). Retrieved from http://www.samhsa.gov/newsroom/advisories/090921vet5101.aspx

  • Valentino, A. M. M., & Fuentecilla, K. (2005). Levamisole: An analytical profile. Microgram Journal, 3(3–4), 134–137.

    Google Scholar 

  • van der Kooy, D. (1987). Place conditioning: A simple and effective method for assessing the motivational properties of drugs. In M. A. Bozarth (Ed.), Methods of assessing the reinforcing properties of abused drugs (pp. 229–240). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Woolverton, W. L., Massey, B. W., Winger, G., Patrick, G. A., & Harris, L. S. (1994). Evaluation of the abuse liability of aminorex. Drug and Alcohol Dependence, 36(3), 187–192.

    Article  PubMed  Google Scholar 

  • Woolverton, W. L., & Wang, Z. (2004). Relationship between injection duration, transporter occupancy and reinforcing strength of cocaine. European Journal of Pharmacology, 486, 251–257.

    Article  PubMed  Google Scholar 

  • Young, A. M., & Herling, S. (1986). Drugs as reinforcers: Studies in laboratory animals. In S. R. Goldberg & I. P. Stolerman (Eds.), Behavioral analysis of drug dependence (pp. 9–67). Orlando: Academic Press.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michael Berquist II for assistance with the statistical analysis.

Funding

The research was conducted in partial fulfillment of the doctoral degree requirements for Zachary J. Zimmermann and was funded by MPI Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary J. Zimmermann.

Ethics declarations

All experimental procedures and husbandry practices received prior approval from an institutional animal care and use committee and were conducted in full compliance with current national and international laws and in accordance with the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). Each of the authors contributed to the preparation of the manuscript.

Conflict of Interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, Z.J., Gauvin, D.V. & Poling, A. Effects of Levamisole on Cocaine Self-Administration by Rats. Psychol Rec 67, 559–567 (2017). https://doi.org/10.1007/s40732-017-0260-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40732-017-0260-1

Keywords

Navigation