Skip to main content

Advertisement

Log in

Biological Effects and Environmental Behaviors of Medium- and Long-Chain Chlorinated Paraffins: A Brief Review

  • REVIEW
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As short-chain chlorinated paraffins (SCCPs) have been classified as persistent organic pollutants (POPs), there has been a significant surge in the utilization of medium- and long-chain chlorinated paraffins (MCCPs and LCCPs) as potential alternatives. However, their environmental and ecological risks have gained more prominence. Consequently, the objective of this review is to provide a comprehensive overview of the biological effects, migration, and transformation of chlorinated paraffins (CPs), with a particular focus on comparing the similarities and differences among SCCPs, MCCPs, and LCCPs.

Recent Findings

According to the latest research findings, it has been discovered that MCCPs and LCCPs possess persistence, bioaccumulation, and long-distance migration abilities, similar to SCCPs. Moreover, these research results demonstrate that the toxicity of MCCPs and LCCPs, especially those components with high chlorine content, is equally significant as that of SCCPs. Furthermore, MCCPs and LCCPs in the environment can undergo biotransformation and photodegradation processes, resulting in the generation of toxic substances such as very short-chain chlorinated paraffins (vSCCPs), SCCPs, and chlorinated alcohols.

Summary

This review comprehensively examines the biological toxicity, health risks, migration, and transformation of CPs with different chain lengths. In addition, the study analyzes the sources and trends of vSCCPs, SCCPs, MCCPs, and LCCPs in different environment media. It should be noted that SCCPs pose a greater health risk to aquatic organisms, whereas MCCPs are particularly concerning for infants. On the other hand, LCCPs present a higher health risk to terrestrial organisms, especially those situated at the top of the food chain. Based on the drawbacks of current research, outlook for future research was proposed. This review is expected to provide a reference for more scientific and reasonable evaluation of the CPs environment risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Xia D, Gao L, Zheng M, Sun Y, Qiao L, Huang H, et al. Identification and evaluation of chlorinated nonane paraffins in the environment: a persistent organic pollutant candidate for the Stockholm Convention? J Hazard Mater. 2019;371:449–55. https://doi.org/10.1016/j.jhazmat.2019.02.089.

    Article  CAS  PubMed  Google Scholar 

  2. Liu Y, Luo X, Zeng Y, Wang Q, Tu W, Yang C, et al. Trophic magnification of short- and medium-chain chlorinated paraffins in terrestrial food webs and their bioamplification in insects and amphibians during metamorphosis. Environ Sci Technol. 2020;54(18):11282–91. https://doi.org/10.1021/acs.est.0c03096.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Guida Y, Capella R, Kajiwara N, Babayemi JO, Torres JPM, Weber R. Inventory approach for short-chain chlorinated paraffins for the Stockholm Convention implementation in Brazil. Chemosphere. 2022;287(Pt 3):132344. https://doi.org/10.1016/j.chemosphere.2021.132344.

    Article  CAS  PubMed  Google Scholar 

  4. Chen C, Chen A, Li L, Peng W, Weber R, Liu J. Distribution and emission estimation of short- and medium-chain chlorinated paraffins in Chinese products through detection-based mass balancing. Environ Sci Technol. 2021;55(11):7335–43. https://doi.org/10.1021/acs.est.0c07058.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. UNEP. (2017). Stockolm convention on persistent organic pollutants, eight meeting. Retrieved accessed February 18, 2021 from https://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/Shortch

  6. Chen W, Liu J, Hou X, Jiang G. A review on biological occurrence, bioaccumulation, transmission and metabolism of chlorinated paraffins. Crit Rev Environ Sci Technol. 2024;54(5):424–43. https://doi.org/10.1080/10643389.2023.2246615.

  7. Guida Y, Matsukami H, Oliveira de Carvalho G, Weber R, Vetter W, Kajiwara N. Homologue composition of technical chlorinated paraffins used in several countries over the last 50 years horizontal line SCCPs are still out there. Environ Sci Technol. 2023;57(35):13136–13147. https://doi.org/10.1021/acs.est.3c02243.

  8. Choo G, Wang W, Cho H-S, Kim K, Park K, Oh J-E. Legacy and emerging persistent organic pollutants in the freshwater system: relative distribution, contamination trends, and bioaccumulation. Environ Intl. 2020;135:105377. https://doi.org/10.1016/j.envint.2019.105377.

  9. Guida Y, Matsukami H, Kajiwara N. Short- and medium-chain chlorinated paraffins in polyvinyl chloride consumer goods available in the Japanese market. Sci Total Environ. 2022;849:157762. https://doi.org/10.1016/j.scitotenv.2022.157762.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. DTHMSaTL Sinnige. Experimental octanol/water partition coefficients of chlorinated paraffins. Chemosphere. 1995;31:4427–35.

    Article  Google Scholar 

  11. Zhang Z, Kuramochi H, Osako M. Predicted distribution of 16 short-chain chlorinated paraffins in air, water, soils and sediments. Environ Chem Lett. 2018;17(1):515–20. https://doi.org/10.1007/s10311-018-0787-7.

    Article  CAS  Google Scholar 

  12. Wang H, Chang H, Zhang C, Feng C, Wu F. Occurrence of chlorinated paraffins in a wetland ecosystem: removal and distribution in plants and sediments. Environ Sci Technol. 2019;55(2):994–1003. https://doi.org/10.1021/acs.est.0c05694.

    Article  ADS  CAS  Google Scholar 

  13. Chen H, Xu L, Zhou W, Han X, Zeng L. Occurrence, distribution and seasonal variation of chlorinated paraffins in coral communities from South China Sea. J Hazard Mater. 2021;402:123529. https://doi.org/10.1016/j.jhazmat.2020.123529.

    Article  CAS  PubMed  Google Scholar 

  14. Ranjbar Jafarabadi A, Dashtbozorg M, Raudonyte-Svirbutaviciene E, Riyahi BA. Chlorinated paraffins (SCCPs and MCCPs) in corals and water-SPM-sediment system in the Persian Gulf, Iran: a potential global threat for coral reefs. Environ Pollut. 2021;275:116531. https://doi.org/10.1016/j.envpol.2021.116531.

    Article  CAS  PubMed  Google Scholar 

  15. •• Lyu L, Fang K, Zhu Z, Li J, Chen Y, Wang L, et al. Bioaccumulation of emerging persistent organic pollutants in the deep-sea cold seep ecosystems: evidence from chlorinated paraffin. J Hazard Mater. 2023;445:130472. https://doi.org/10.1016/j.jhazmat.2022.130472. This paper studies the effect of bioaccumulation on the migration and transformation of CPs in deep-sea cold seep ecosystems.

    Article  CAS  PubMed  Google Scholar 

  16. Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. Environ Pollut. 2023;317:120841. https://doi.org/10.1016/j.envpol.2022.120841.

    Article  CAS  PubMed  Google Scholar 

  17. Brits M, de Boer J, Rohwer ER, De Vos J, Weiss JM, Brandsma SH. Short-, medium-, and long-chain chlorinated paraffins in South African indoor dust and cat hair. Chemosphere. 2020;238:124643. https://doi.org/10.1016/j.chemosphere.2019.124643.

    Article  CAS  PubMed  Google Scholar 

  18. McGrath TJ, Fujii Y, Jeong Y, Bombeke J, Covaci A, Poma G. Levels of short- and medium-chain chlorinated paraffins in edible insects and implications for human exposure. Environ Sci Technol. 2022;56(18):13212–21. https://doi.org/10.1021/acs.est.2c03255.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Meziere M, Marchand P, Hutinet S, Larvor F, Baeza E, Le Bizec B, et al. Transfer of short-, medium-, and long-chain chlorinated paraffins to eggs of laying hens after dietary exposure. Food Chem. 2021;343:128491. https://doi.org/10.1016/j.foodchem.2020.128491.

    Article  CAS  PubMed  Google Scholar 

  20. • Yuan B, de Wit CA. Temporal trends and age-dependent sex differences in chlorinated paraffin accumulation in moose. Environ Sci Technol Lett. 2022;9(12):1044–9. https://doi.org/10.1021/acs.estlett.2c00672. This article analyses the factors that influence the bioaccumulation of different CPs, and the health risks of different CPs.

    Article  CAS  Google Scholar 

  21. Yuan B, Vorkamp K, Roos AM, Faxneld S, Sonne C, Garbus SE, et al. Accumulation of short-, medium-, and long-chain chlorinated paraffins in marine and terrestrial animals from Scandinavia. Environ Sci Technol. 2019;53(7):3526–37. https://doi.org/10.1021/acs.est.8b06518.

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Du X, Yuan B, Zhou Y, de Wit CA, Zheng Z, Yin G. Chlorinated paraffins in two snake species from the Yangtze River Delta: tissue distribution and biomagnification. Environ Sci Technol. 2020;54(5):2753–62. https://doi.org/10.1021/acs.est.9b06467.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Aaron TF, Gregg TT, Chris DC, Muir DCG. Dietary accumulation and quantitative structure-activity relationships for depuration and biotransformation of short (C10), medium (C14), and long (C18) carbon-chain polychlorinated alkanes by juvenile rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem. 2000;19:1508–16. https://doi.org/10.1897/1551-5028(2000)019%3c1508:daaqsa%3e2.3.co;2.

    Article  Google Scholar 

  24. Magali H, Derek CGM, Gregg TT, Michael DW, Camilla T, Moore S. Bioaccumulation and trophic magnification of short- and medium-chain chlorinated paraffins in food webs from Lake Ontario. Environ Sci Technol. 2008;42:3893–9.

    Article  Google Scholar 

  25. Castro M, Sobek A, Yuan B, Breitholtz M. Bioaccumulation potential of CPs in aquatic organisms: uptake and depuration in Daphnia magna. Environ Sci Technol. 2019;53(16):9533–41. https://doi.org/10.1021/acs.est.9b01751.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Girones L, Guida Y, Oliva AL, Machado Torres JP, Marcovecchio JE, Vetter W, et al. Short- and medium-chain chlorinated paraffins in fish from an anthropized south-western Atlantic estuary, Bahia Blanca. Argentina Chemosphere. 2023;328:138575. https://doi.org/10.1016/j.chemosphere.2023.138575.

    Article  CAS  PubMed  Google Scholar 

  27. Hu H, Qu J, Zhao M, Wu P, Zhu W, Zhou Y, et al. Bioaccumulation and trophic magnification of short chain chlorinated paraffins in marine organisms from East China Sea. Mar Pollut Bull. 2021;173(Pt B):113049. https://doi.org/10.1016/j.marpolbul.2021.113049.

    Article  CAS  PubMed  Google Scholar 

  28. • Dong Z, Li T, Wan Y, Sun Y, Hu J. Physiologically based pharmacokinetic modeling for chlorinated paraffins in rats and humans: importance of biliary excretion. Environ Sci Technol. 2020;54(2):938–46. https://doi.org/10.1021/acs.est.9b03991. This paper analyzes the potential effects of CPs on human exposure through a model.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Simond AE, Ross PS, Cabrol J, Lesage V, Lair S, Woudneh MB, et al. Declining concentrations of chlorinated paraffins in endangered St. Lawrence Estuary belugas (Delphinapterus leucas): response to regulations or a change in diet? Sci Total Environ. 2023;868:161488. https://doi.org/10.1016/j.scitotenv.2023.161488.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Cooley HM, Fisk AT, Wiens SC, Tomy GT, Evans RE, Muir DCG. Examination of the behavior and liver and thyroid histology of juvenile rainbow trout (Oncorhynchus mykiss) exposed to high dietary concentrations of C10-, C11-, C12- andC14-polychlorinated n-alkanes. Aquat Toxicol. 2001;54:81–99. https://doi.org/elsevier.com/locate/aquatox.

  31. Geng N, Zhang H, Zhang B, Wu P, Wang F, Yu Z, et al. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells. Environ Sci Technol. 2015;49(5):3076–83. https://doi.org/10.1021/es505802x.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Yang X, Zhang B, Gao Y, Chen Y, Yin D, Xu T. The chlorine contents and chain lengths influence the neurobehavioral effects of commercial chlorinated paraffins on zebrafish larvae. J Hazard Mater. 2019;377:172–8. https://doi.org/10.1016/j.jhazmat.2019.05.047.

    Article  CAS  PubMed  Google Scholar 

  33. • Ren X, Geng N, Zhang H, Wang F, Gong Y, Song X, et al. Comparing the disrupting effects of short-, medium- and long-chain chlorinated paraffins on cell viability and metabolism. Sci Total Environ. 2019;685:297–307. https://doi.org/10.1016/j.scitotenv.2019.05.388. This paper compares the metabolic toxicity of SCCPs, MCCPs and LCCPs.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Chen H, Lam JCW, Zhu M, Wang F, Zhou W, Du B, et al. Combined effects of dust and dietary exposure of occupational workers and local residents to short- and medium-chain chlorinated paraffins in a mega E-waste recycling industrial park in South China. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.8b02625.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ding W, Zhao Z, Zheng Y, Wang R, Zhang Z, Zhang Z, et al. Exposure to short-chain chlorinated paraffins induces astrocyte activation via JAK2/STAT3 signaling pathway. Ecotoxicol Environ Saf. 2022;248:114268. https://doi.org/10.1016/j.ecoenv.2022.114268.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao X, Zhang T, Zheng Y, Zhao Z, Ding W, Zhang Z, et al. Gut microbiota from short-chain chlorinated paraffin-exposed mice promotes astrocyte activation by disrupting the intestinal tight junction via zonulin upregulation. J Agric Food Chem. 2023;71(21):8192–202. https://doi.org/10.1021/acs.jafc.3c01058.

    Article  CAS  PubMed  Google Scholar 

  37. Xue Z, Zhu J, Wang X, Yang C, Fu Z. Evaluation of the immunomodulatory effects of C9–13-CPs in macrophages. Acta Biochim Biophys Sin (Shanghai). 2021;53(9):1154–65. https://doi.org/10.1093/abbs/gmab094.

    Article  CAS  PubMed  Google Scholar 

  38. Xia P, Peng Y, Fang W, Tian M, Shen Y, Ma C, et al. Cross-model comparison of transcriptomic dose-response of short-chain chlorinated paraffins. Environ Sci Technol. 2021;55(12):8149–58. https://doi.org/10.1021/acs.est.1c00975.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chen C, Fang Y, Zhou D. Selective pressure of PFOA on microbial community: enrichment of denitrifiers harboring ARGs and the transfer of ferric-electrons. Water Res. 2023;233:119813. https://doi.org/10.1016/j.watres.2023.119813.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Wu J, Wu Z, Zhou J, Zhou L, Lu Y, et al. Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. Water Res. 2021;204:117605. https://doi.org/10.1016/j.watres.2021.117605.

  41. Zeng L, Gao J, Cui Y, Wang Z, Zhao Y, Yuan Y, et al. Insight into the evolution of microbial communities and resistance genes induced by sucralose in partial nitrification system with triclosan pre-exposure. J Hazard Mater. 2024;461:132581. https://doi.org/10.1016/j.jhazmat.2023.132581.

    Article  CAS  PubMed  Google Scholar 

  42. He K, Xue B, Yang X, Wang S, Li C, Zhang X, et al. Low-concentration of trichloromethane and dichloroacetonitrile promote the plasmid-mediated horizontal transfer of antibiotic resistance genes. J Hazard Mater. 2022;425:128030. https://doi.org/10.1016/j.jhazmat.2021.128030.

    Article  CAS  PubMed  Google Scholar 

  43. Zhong D, Zhou Z, Ma W, Ma J, Feng W, Li J, et al. Antibiotic enhances the spread of antibiotic resistance among chlorine-resistant bacteria in drinking water distribution system. Environ Res. 2022;211:113045. https://doi.org/10.1016/j.envres.2022.113045.

    Article  CAS  PubMed  Google Scholar 

  44. Wang YH, Wu YH, Luo LW, Wang Q, Tong X, Bai Y, et al. Metagenomics analysis of the key functional genes related to biofouling aggravation of reverse osmosis membranes after chlorine disinfection. J Hazard Mater. 2021;410:124602. https://doi.org/10.1016/j.jhazmat.2020.124602.

    Article  CAS  PubMed  Google Scholar 

  45. Dang C, Zhang Y, Zheng M, Meng Q, Wang J, Zhong Y, et al. Effect of chlorine disinfectant influx on biological sewage treatment process under the COVID-19 pandemic: performance, mechanisms and implications. Water Res. 2023;244:120453. https://doi.org/10.1016/j.watres.2023.120453.

    Article  CAS  PubMed  Google Scholar 

  46. DiMento BP, Tusei CL, Aeppli C. Photochemical degradation of short-chain chlorinated paraffins in aqueous solution by hydrated electrons and hydroxyl radicals. Chemosphere. 2022;303(Pt 1):134732. https://doi.org/10.1016/j.chemosphere.2022.134732.

    Article  CAS  PubMed  Google Scholar 

  47. Xin S, Gao W, Wang Y, Jiang G. Identification of the released and transformed products during the thermal decomposition of a highly chlorinated paraffin. Environ Sci Technol. 2018;52(17):10153–62. https://doi.org/10.1021/acs.est.8b01729.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Perkons I, Pasecnaja E, Zacs D. The impact of baking on chlorinated paraffins: characterization of C(10)-C(17) chlorinated paraffins in oven-baked pastry products and unprocessed pastry dough by HPLC-ESI-Q-TOF-MS. Food Chem. 2019;298:125100. https://doi.org/10.1016/j.foodchem.2019.125100.

    Article  CAS  PubMed  Google Scholar 

  49. Chen W, Hou X, Mao X, Jiao S, Wei L, Wang Y, et al. Biotic and abiotic transformation pathways of a short-chain chlorinated paraffin congener, 1,2,5,6,9,10-C(10)H(16)Cl(6), in a rice seedling hydroponic exposure system. Environ Sci Technol. 2022;56(13):9486–96. https://doi.org/10.1021/acs.est.2c01119.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Li Y, Chen W, Kong W, Liu J, Schnoor JL, Jiang G. Transformation of 1,1,1,3,8,10,10,10-octachlorodecane in air phase increased by phytogenic volatile organic compounds of pumpkin seedlings. Sci Total Environ. 2020;704:135455. https://doi.org/10.1016/j.scitotenv.2019.135455.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Li Y, Hou X, Chen W, Liu J, Zhou Q, Schnoor JL, et al. Carbon chain decomposition of short chain chlorinated paraffins mediated by pumpkin and soybean seedlings. Environ Sci Technol. 2019;53(12):6765–72. https://doi.org/10.1021/acs.est.9b01215.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lyu L, He Y, Dong C, Li G, Wei G, Shao Z, et al. Characterization of chlorinated paraffin-degrading bacteria from marine estuarine sediments. J Hazard Mater. 2022;440:129699. https://doi.org/10.1016/j.jhazmat.2022.129699.

    Article  CAS  PubMed  Google Scholar 

  53. Knobloch MC, Schinkel L, Schilling I, Kohler HE, Lienemann P, Bleiner D, et al. Transformation of short-chain chlorinated paraffins by the bacterial haloalkane dehalogenase LinB - formation of mono- and di-hydroxylated metabolites. Chemosphere. 2021;262: 128288. https://doi.org/10.1016/j.chemosphere.2020.128288.

    Article  CAS  PubMed  Google Scholar 

  54. Sarasa-Buisán C, Guío J, Castro C, Bes MT, Fillat MF, Peleato ML, et al. Contributions on lindane degradation by Microcystis aeruginosa PCC 7806. Water. 2022;14(8):1219. https://doi.org/10.3390/w14081219.

    Article  CAS  Google Scholar 

  55. Huang X, Xu K, Lyu L, Ding C, Zhao Y, Wang X. Identification and yield of metabolites of chlorinated paraffins incubated with chicken liver microsomes: assessment of their potential to convert into metabolites. J Hazard Mater. 2023;455:131640. https://doi.org/10.1016/j.jhazmat.2023.131640.

    Article  CAS  PubMed  Google Scholar 

  56. Chen S, Gong Y, Luo Y, Cao R, Yang J, Cheng L, et al. Toxic effects and toxicological mechanisms of chlorinated paraffins: a review for insight into species sensitivity and toxicity difference. Environ Int. 2023;178:108020. https://doi.org/10.1016/j.envint.2023.108020.

    Article  CAS  PubMed  Google Scholar 

  57. Schroter J, Schiller J. Chlorinated phospholipids and fatty acids: (patho)physiological relevance, potential toxicity, and analysis of lipid chlorohydrins. Oxid Med Cell Longev. 2016;2016:8386362. https://doi.org/10.1155/2016/8386362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohri H, Suter DAI, Brown-Woodman PDC, White IG, Ridley DD. Identification of the biochemical lesion produced by α-chlorohydrin in spermatozoa. Nature. 1975;255(5503):75–7. https://doi.org/10.1038/255075a0.

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Zhang J, Liao H, Chen Y, Li X, Chen R, Han S, et al. Concentrations and homologue patterns of SCCPs and MCCPs in the serum of the general population of adults in Hangzhou. China Chemosphere. 2023;335:139131. https://doi.org/10.1016/j.chemosphere.2023.139131.

    Article  CAS  PubMed  Google Scholar 

  60. • Kratschmer K, Malisch R, Vetter W. Chlorinated paraffin levels in relation to other persistent organic pollutants found in pooled human milk samples from primiparous mothers in 53 countries. Environ Health Perspect. 2021;129(8):87004. https://doi.org/10.1289/EHP7696. This article investigated the concentration of CPs in human breast milk around the world, and the reason for the neglect of MCCPs.

    Article  PubMed  Google Scholar 

  61. Liu Y, Aamir M, Li M, Liu K, Hu Y, Liu N, et al. Prenatal and postnatal exposure risk assessment of chlorinated paraffins in mothers and neonates: occurrence, congener profile, and transfer behavior. J Hazard Mater. 2020;395:122660. https://doi.org/10.1016/j.jhazmat.2020.122660.

    Article  CAS  PubMed  Google Scholar 

  62. Sprengel J, Wieselmann S, Kropfl A, Vetter W. High amounts of chlorinated paraffins in oil-based vitamin E dietary supplements on the German market. Environ Int. 2019;128:438–45. https://doi.org/10.1016/j.envint.2019.04.065.

    Article  CAS  PubMed  Google Scholar 

  63. Tomasko J, Hrbek V, Kourimsky T, Stupak M, Hajslova J, Pulkrabova J. Are fish oil-based dietary supplements a significant source of exposure to chlorinated paraffins? Sci Total Environ. 2022;833:155137. https://doi.org/10.1016/j.scitotenv.2022.155137.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Friden UE, McLachlan MS, Berger U. Chlorinated paraffins in indoor air and dust: concentrations, congener patterns, and human exposure. Environ Int. 2011;37(7):1169–74. https://doi.org/10.1016/j.envint.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  65. Yuan B, Tay JH, Padilla-Sanchez JA, Papadopoulou E, Haug LS, de Wit CA. Human exposure to chlorinated paraffins via inhalation and dust ingestion in a Norwegian cohort. Environ Sci Technol. 2021;55(2):1145–54. https://doi.org/10.1021/acs.est.0c05891.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. van Mourik LM, Wang X, Paxman C, Leonards PEG, Wania F, de Boer J, et al. Spatial variation of short- and medium-chain chlorinated paraffins in ambient air across Australia. Environ Pollut. 2020;261:114141. https://doi.org/10.1016/j.envpol.2020.114141.

    Article  CAS  PubMed  Google Scholar 

  67. Zhuo M, Ma S, Li G, Yu Y, An T. Chlorinated paraffins in the indoor and outdoor atmospheric particles from the Pearl River Delta: characteristics, sources, and human exposure risks. Sci Total Environ. 2019;650(Pt 1):1041–9. https://doi.org/10.1016/j.scitotenv.2018.09.107.

    Article  ADS  CAS  PubMed  Google Scholar 

  68. • Weng J, Yu H, Zhang H, Gao L, Qiao L, Ai Q, et al. Health risks posed by dermal and inhalation exposure to high concentrations of chlorinated paraffins found in soft poly(vinyl chloride) curtains. Environ Sci Technol. 2023;57(14):5580–91. https://doi.org/10.1021/acs.est.2c07040. This article analyzes the source and exposure risk of indoor CPs.

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Zhan F, Zhang H, Wang J, Xu J, Yuan H, Gao Y, et al. Release and gas-particle partitioning behaviors of short-chain chlorinated paraffins (SCCPs) during the thermal treatment of polyvinyl chloride flooring. Environ Sci Technol. 2017;51(16):9005–12. https://doi.org/10.1021/acs.est.7b01965.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Yu H, Gao Y, Zhan F, Zhang H, Chen J. Release mechanism of short- and medium-chain chlorinated paraffins from PVC materials under thermal treatment. Environ Sci Technol. 2023;57(8):3095–103. https://doi.org/10.1021/acs.est.2c07548.

    Article  ADS  CAS  PubMed  Google Scholar 

  71. McGrath TJ, Christia C, Poma G, Covaci A. Seasonal variation of short-, medium- and long-chain chlorinated paraffin distribution in Belgian indoor dust. Environ Int. 2022;170:107616. https://doi.org/10.1016/j.envint.2022.107616.

    Article  CAS  PubMed  Google Scholar 

  72. McGrath TJ, Poma G, Hutinet S, Fujii Y, Dodson RE, Johnson-Restrepo B, et al. An international investigation of chlorinated paraffin concentrations and homologue distributions in indoor dust. Environ Pollut. 2023;333:121994. https://doi.org/10.1016/j.envpol.2023.121994.

    Article  CAS  PubMed  Google Scholar 

  73. Wu J, Cao D, Gao W, Lv K, Liang Y, Fu J, et al. The atmospheric transport and pattern of medium chain chlorinated paraffins at Shergyla Mountain on the Tibetan Plateau of China. Environ Pollut. 2019;245:46–52. https://doi.org/10.1016/j.envpol.2018.10.112.

    Article  CAS  PubMed  Google Scholar 

  74. Wu J, Gao W, Liang Y, Fu J, Gao Y, Wang Y, et al. Spatiotemporal distribution and alpine behavior of short chain chlorinated paraffins in air at Shergyla Mountain and Lhasa on the Tibetan Plateau of China. Environ Sci Technol. 2017;51(19):11136–44. https://doi.org/10.1021/acs.est.7b03457.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Lyu L, Zhang S. Chlorinated paraffin pollution in the marine environment. Environ Sci Technol. 2023;57(32):11687–703. https://doi.org/10.1021/acs.est.3c02316.

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Wang XT, Jia HH, Hu BP, Cheng HX, Zhou Y, Fu R. Occurrence, sources, partitioning and ecological risk of short- and medium-chain chlorinated paraffins in river water and sediments in Shanghai. Sci Total Environ. 2019;653:475–84. https://doi.org/10.1016/j.scitotenv.2018.10.391.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Gao W, Cao D, Wang Y, Wu J, Wang Y, Wang Y, et al. External exposure to short- and medium-chain chlorinated paraffins for the general population in Beijing. China Environ Sci Technol. 2018;52(1):32–9. https://doi.org/10.1021/acs.est.7b04657.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Chen H, Han X, Liang B, Deng M, Du B, Zeng L. Spatial distribution, homologue patterns and ecological risks of chlorinated paraffins in mangrove sediments along the South China Coast. Environ Pollut. 2022;294:118623. https://doi.org/10.1016/j.envpol.2021.118623.

    Article  CAS  PubMed  Google Scholar 

  79. Li Q, Cheng X, Cui Y, Sun J, Li J, Zhang G. Short- and medium-chain chlorinated paraffins in the Henan section of the Yellow River: occurrences, fates, and fluxes. Sci Total Environ. 2018;640–641:1312–9. https://doi.org/10.1016/j.scitotenv.2018.05.344.

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Pan X, Tang J, Tian C, Li J, Zhang G. Short- and medium-chain chlorinated paraffins in sediments from the Laizhou Bay area, North China: implications for transportation from rivers to marine environment. Environ Pollut. 2018;243(Pt B):1460–8. https://doi.org/10.1016/j.envpol.2018.09.123.

    Article  CAS  PubMed  Google Scholar 

  81. Qiao L, Gao L, Xia D, Huang H, Zheng M. Short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yangtze River: spatial distributions, source apportionment and risk assessment. Sci Total Environ. 2017;575:1177–82. https://doi.org/10.1016/j.scitotenv.2016.09.193.

    Article  ADS  CAS  PubMed  Google Scholar 

  82. Qiao L, Xia D, Gao L, Huang H, Zheng M. Occurrences, sources and risk assessment of short- and medium-chain chlorinated paraffins in sediments from the middle reaches of the Yellow River. China Environ Pollut. 2016;219:483–9. https://doi.org/10.1016/j.envpol.2016.05.057.

    Article  CAS  PubMed  Google Scholar 

  83. Yuan B, McLachlan MS, Roos AM, Simon M, Strid A, de Wit CA. Long-chain chlorinated paraffins have reached the Arctic. Environ Sci Technol Lett. 2021;8(9):753–9. https://doi.org/10.1021/acs.estlett.1c00470.

    Article  CAS  Google Scholar 

  84. Zhang C, Chang H, Wang H, Zhu Y, Zhao X, He Y, et al. Spatial and temporal distributions of short-, medium-, and long-chain chlorinated paraffins in sediment cores from nine lakes in China. Environ Sci Technol. 2019;53(16):9462–71. https://doi.org/10.1021/acs.est.8b07296.

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Wang XT, Wang XK, Zhang Y, Chen L, Sun YF, Li M, et al. Short- and medium-chain chlorinated paraffins in urban soils of Shanghai: spatial distribution, homologue group patterns and ecological risk assessment. Sci Total Environ. 2014;490:144–52. https://doi.org/10.1016/j.scitotenv.2014.04.121.

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Wu Y, Wu J, Tan H, Song Q, Zhang J, Zhong X, et al. Distributions of chlorinated paraffins and the effects on soil microbial community structure in a production plant brownfield site. Environ Pollut. 2020;262:114328. https://doi.org/10.1016/j.envpol.2020.114328.

    Article  CAS  PubMed  Google Scholar 

  87. Zhao N, Cui Y, Wang P, Li S, Jiang W, Luo N, et al. Short-chain chlorinated paraffins in soil, sediment, and seawater in the intertidal zone of Shandong Peninsula, China: distribution and composition. Chemosphere. 2019;220:452–8. https://doi.org/10.1016/j.chemosphere.2018.12.063.

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Chen W, Hou X, Liu Y, Hu X, Liu J, Schnoor JL, et al. Medium- and short-chain chlorinated paraffins in mature maize plants and corresponding agricultural soils. Environ Sci Technol. 2021;55(8):4669–78. https://doi.org/10.1021/acs.est.0c05111.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bogdal C, Niggeler N, Gluge J, Diefenbacher PS, Wachter D, Hungerbuhler K. Temporal trends of chlorinated paraffins and polychlorinated biphenyls in Swiss soils. Environ Pollut. 2017;220(Pt B):891–9. https://doi.org/10.1016/j.envpol.2016.10.073.

    Article  CAS  PubMed  Google Scholar 

  90. Jiang L, Ma X, Wang Y, Gao W, Liao C, Gong Y, et al. Land-ocean exchange mechanism of chlorinated paraffins and polycyclic aromatic hydrocarbons with diverse sources in a coastal zone boundary area, North China: the role of regional atmospheric transmission. Environ Sci Technol. 2022;56(18):12852–62. https://doi.org/10.1021/acs.est.2c00742. This paper evaluates the land-sea exchange mechanism and influencing factors of CPs.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Casas G, Martinez-Varela A, Vila-Costa M, Jimenez B, Dachs J. Rain amplification of persistent organic pollutants. Environ Sci Technol. 2021;55(19):12961–72. https://doi.org/10.1021/acs.est.1c03295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Regnery J, Püttmann W. Organophosphorus flame retardants and plasticizers in rain and snow from Middle Germany. CLEAN – Soil, Air, Water. 2009;37(4–5):334–42. https://doi.org/10.1002/clen.200900050.

  93. Ma X, Wang Y, Gao W, Wang Y, Wang Z, Yao Z, et al. Air-seawater gas exchange and dry deposition of chlorinated paraffins in a typical inner sea (Liaodong Bay). North China Environ Sci Technol. 2018;52(14):7729–35. https://doi.org/10.1021/acs.est.8b01803.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Hu H, Jin H, Li T, Guo Y, Wu P, Xu K, et al. Spatial distribution, partitioning, and ecological risk of short chain chlorinated paraffins in seawater and sediment from East China Sea. Sci Total Environ. 2022;811:151932. https://doi.org/10.1016/j.scitotenv.2021.151932.

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Yuan B, Rudel H, de Wit CA, Koschorreck J. Identifying emerging environmental concerns from long-chain chlorinated paraffins towards German ecosystems. J Hazard Mater. 2022;424(Pt C):127607. https://doi.org/10.1016/j.jhazmat.2021.127607.

    Article  CAS  PubMed  Google Scholar 

  96. Yuan B, Bruchert V, Sobek A, de Wit CA. Temporal trends of C(8)-C(36) chlorinated paraffins in Swedish coastal sediment cores over the past 80 years. Environ Sci Technol. 2017;51(24):14199–208. https://doi.org/10.1021/acs.est.7b04523.

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Huang X, Cui Z, Ding C, Su Q, Lin X, Wang W, et al. Differential accumulation of short-, medium-, and long-chain chlorinated paraffin in free-range laying hens from an E-waste recycling area. J Agric Food Chem. 2021;69(35):10329–37. https://doi.org/10.1021/acs.jafc.1c04546.

    Article  CAS  PubMed  Google Scholar 

  98. Jiang L, Gao W, Ma X, Wang Y, Wang C, Li Y, et al. Long-term investigation of the temporal trends and gas/particle partitioning of short- and medium-chain chlorinated paraffins in ambient air of King George Island. Antarctica Environ Sci Technol. 2021;55(1):230–9. https://doi.org/10.1021/acs.est.0c05964.

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Huang J, Zhao L, Shi Y, Zeng X, Sun W, Zhao X, et al. Characterization of short-, medium- and long-chain chlorinated paraffins in ambient PM(2.5) from the Pearl River Delta. China Environ Int. 2023;175:107932. https://doi.org/10.1016/j.envint.2023.107932.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research is funded by the National Natural Science Foundation of China (No. 42207517) and the Start-up Grant from Zhejiang University of Technology, China (No. 2020129007229, No. 2021129017829).

Author information

Authors and Affiliations

Authors

Contributions

Zilin Chen and Peirui Liu wrote the main manuscript text; Ziyue Cheng prepared Table 1 and Fig. 1; Xiangliang Pan revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Peirui Liu or Xiangliang Pan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Cheng, Z., Liu, P. et al. Biological Effects and Environmental Behaviors of Medium- and Long-Chain Chlorinated Paraffins: A Brief Review. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00302-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00302-0

Keywords

Navigation