Skip to main content
Log in

A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Environmental pollution stemming from industrial, agricultural, and domestic activities is constantly increasing. The removal of these hazardous pollutants from the environment is inevitable, so finding and developing convenient, cost-effective, and biocompatible treatment methods is imperative. As emerging adsorbents, green nanoparticles (NPs) have received significant attention in recent years due to their biocompatibility and promising capability for removing pollutants such as heavy metals from aqueous solutions. This study aims to provide a comprehensive and coherent review of the heavy metals removal via an adsorption technique using green nanoparticles, focusing on their synthesis and adsorption mechanisms.

Recent Findings

Currently, plants and microorganisms are used to synthesize green nano-adsorbents. The antioxidant compounds in the extracts of different parts of the plants could be used as reducing agents for the synthesis of zero-valent metal nanoparticles. Moreover, they can be applied to the surface of nanoparticles, which enhances the stability of synthesized nanoparticles. In addition to plant-derived compounds, microorganisms can play a significant role in synthesizing green nanoparticles.

Summary

For decades, human health and the environment have been threatened by exposure to heavy metals caused by the activities of mines, industries, and factories. Therefore, there is a need to provide solutions to remove these pollutants from the environment. One of the effective solutions is the adsorption method. The efficiency of this method is strongly influenced by the selection of suitable adsorbents. In recent years, special attention has been paid to nano-adsorbents. Utilizing green nano-adsorbents, as opposed to conventional materials, is a critical strategy for reducing environmental pollutants, particularly for heavy metal adsorption from contaminated water and wastewater. This paper also discusses the sources and occurrence of heavy metals, as well as a number of environmental issues of methods that employ green and eco-friendly nano-adsorbents for heavy metals removal, including (i) the type of heavy metals and their use pattern, (ii) influencing factors, (iii) heavy metal analysis methods and their potential toxicity, and (iv) different conventional and cutting-edge nanotechnologies for water and wastewater treatment. The literature review, which covered the years 2002–2023, provided a critical illustration of current concerns about heavy metal contamination and removal efforts, with a focus on green nano-adsorbents and the use of these environmentally friendly materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ajibade FO, Adelodun B, Lasisi KH, Fadare OO, Ajibade TF, Nwogwu NA, Sulaymon ID, Ugya AY, Wang HC, Wang A.Chapter 25 - Environmental pollution and their socioeconomic impacts, in Microbe Mediated Remediation of Environmental Contaminants, A. Kumar, et al., Editors. 2021, Woodhead Publishing. p. 321–354.

  2. Li X, Li C, Wang X, Liu Q, Yi Y, Zhang X. A developed method of water pollution control based on environmental capacity and environmental flow in Luanhe River Basin. Water. 2022;14(5):730.

    Article  CAS  Google Scholar 

  3. Long C, Jiang Z, Shangguan J, Qing T, Zhang P, Feng B. Applications of carbon dots in environmental pollution control: a review. Chem Eng J. 2021;406.

    Article  CAS  Google Scholar 

  4. Huang Y, Mi F, Wang J, Yang X, Yu T. Water pollution incidents and their influencing factors in China during the past 20 years. Environ Monit Assess. 2022;194(3):182.

    Article  PubMed  Google Scholar 

  5. Mishra S, Huang Y, Li J, Wu X, Zhou Z, Lei Q, Bhatt P, Chen S. Biofilm-mediated bioremediation is a powerful tool for the removal of environmental pollutants. Chemosphere. 2022;294.

    Article  PubMed  CAS  Google Scholar 

  6. Qiao A, Cui M, Huang R, Ding G, Qi W, He Z, Klemeš JJ, Su R. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohyd Polym. 2021;272.

    Article  CAS  Google Scholar 

  7. Saravanan A, Kumar PS, Hemavathy RV, Jeevanantham S, Harikumar P, Priyanka G, Devakirubai DRA. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci Total Environ. 2022;812.

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Novikau R, Lujaniene G. Adsorption behaviour of pollutants: heavy metals, radionuclides, organic pollutants, on clays and their minerals (raw, modified and treated): a review. J Environ Manage. 2022;309.

    Article  PubMed  CAS  Google Scholar 

  9. Yaashikaa PR, Senthil Kumar P, Karishma S. Review on biopolymers and composites – evolving material as adsorbents in removal of environmental pollutants. Environ Res. 2022;212.

    Article  PubMed  CAS  Google Scholar 

  10. Jawed A, Saxena V, Pandey LM. Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. J Water Proc Eng. 2020;33.

  11. Mitra S, Chakraborty AJ, Tareq AM, Emran TB, Nainu F, Khusro A, Idris AM, Khandaker M U, Osman H Alhumaydhi FA. Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud University-Sci. 2022:101865.

  12. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech. 2018;8(4):216.

  14. Tadesse M, Tsegaye D, Girma G. Assessment of the level of some physico-chemical parameters and heavy metals of Rebu river in oromia region. Ethiopia MOJ Biology and Medicine. 2018;3(3):99–118.

    Article  Google Scholar 

  15. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol. 2021;12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. 2015;16(12):29592–630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Matta G, Gjyli L. Mercury, lead and arsenic: impact on environment and human health. J Chem Pharm Sci. 2016;9(2):718–25.

    CAS  Google Scholar 

  18. Mohamed A, Atta RR, Kotp AA, Abo El-Ela FI, Abd El-Raheem H, Farghali A, Alkhalifah DHM, Hozzein WN, Mahmoud R. Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2+ and Ni2+) from aqueous solutions with antimicrobial investigation. Sci Rep. 2023;13(1):7227.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kumar P, Kumar P. Removal of cadmium (Cd-II) from aqueous solution using gas industry-based adsorbent. SN Appl Sci. 2019;1(4):365.

    Article  MathSciNet  CAS  Google Scholar 

  20. Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, Wang X, Lin N, Qi Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci. 2013;279:432–40.

    Article  ADS  CAS  Google Scholar 

  21. Guo T, Bulin C, Li B, Zhao Z, Yu H, Sun H, Ge X, Xing R, Zhang B. Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe3O4. Adsorpt Sci Technol. 2017;36(3–4):1031–48.

    Google Scholar 

  22. Awad FS, AbouZied KM, Abou El-Maaty WM, El-Wakil AM, Samy El-Shall M. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab J Chem. 2020;13(1):2659–70.

    Article  CAS  Google Scholar 

  23. Du Y, Dai M, Cao J, Peng C. Fabrication of a low-cost adsorbent supported zero-valent iron by using red mud for removing Pb(ii) and Cr(vi) from aqueous solutions. RSC Adv. 2019;9(57):33486–96.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rafiq Z, Nazir R, Noman D-e-S, Shah M, Ali S. Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater. J Environ Chem Eng. 2014;2.

  25. Nasirimoghaddam S, Zeinali S, Sabbaghi S. Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples. J Ind Eng Chem. 2015;27:79–87.

    Article  CAS  Google Scholar 

  26. Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A. A review of adsorbents for heavy metal decontamination: growing approach to wastewater treatment. Materials. 2021;14(16):4702.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  27. Das PN, Jithesh K, Raj KG. Recent developments in the adsorptive removal of heavy metal ions using metal-organic frameworks and graphene-based adsorbents. J Indian Chem Soc. 2021;98(11).

    Article  CAS  Google Scholar 

  28. Gong Y, Wang Y, Lin N, Wang R, Wang M, Zhang X. Iron-based materials for simultaneous removal of heavy metal(loid)s and emerging organic contaminants from the aquatic environment: recent advances and perspectives. Environ Pollut. 2022;299.

    Article  PubMed  CAS  Google Scholar 

  29. Yu G, Wang G, Chi T, Du C, Wang J, Li P, Zhang Y, Wang S, Yang K, Long Y, Chen H. Enhanced removal of heavy metals and metalloids by constructed wetlands: a review of approaches and mechanisms. Sci Total Environ. 2022;821.

    Article  ADS  PubMed  CAS  Google Scholar 

  30. Gao M, Liu G, Gao Y, Chen G, Huang X, Xu X, Wang J, Yang X, Xu D. Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. TrAC, Trends Anal Chem. 2021;137.

    Article  CAS  Google Scholar 

  31. Madeira R, Camps I. First-principles calculations of nickel, cadmium, and lead nanoclusters adsorption on single-wall (10,0) boron-nitride nanotube. Appl Surf Sci. 2022;573.

    Article  CAS  Google Scholar 

  32. Alsamman MT, Sánchez J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. Arab J Chem. 2021;14(12).

    Article  CAS  Google Scholar 

  33. Sultana M, Rownok MH, Sabrin M, Rahaman MH, Alam SMN. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Eng Technol. 2022;6.

  34. Gupta AD, Rawat KP, Bhadauria V, Singh H. Recent trends in the application of modified starch in the adsorption of heavy metals from water: a review. Carbohyd Polym. 2021;269.

    Article  CAS  Google Scholar 

  35. Chai WS, Cheun JY, Kumar PS, Mubashir M, Majeed Z, Banat F, Ho S-H, Show PL. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J Clean Prod. 2021;296.

    Article  CAS  Google Scholar 

  36. Chen W-H, Hoang AT, Nižetić S, Pandey A, Cheng CK, Luque R, Ong HC, Thomas S, Nguyen XP. Biomass-derived biochar: from production to application in removing heavy metal-contaminated water. Process Saf Environ Prot. 2022;160:704–33.

    Article  CAS  Google Scholar 

  37. Guisela BZ, Ohana NDA, Dalvani SD, Fermin GV, Francisco Hm L, Luis N-G. Adsorption of arsenic anions in water using modified lignocellulosic adsorbents. Results Eng. 2022;13.

  38. Carneiro MA, Pintor AMA, Boaventura RAR, Botelho CMS. Efficient removal of arsenic from aqueous solution by continuous adsorption onto iron-coated cork granulates. J Hazard Mater. 2022;432.

    Article  PubMed  CAS  Google Scholar 

  39. Yadav A, Dindorkar SS, Ramisetti SB, Sinha N. Simultaneous adsorption of methylene blue and arsenic on graphene, boron nitride and boron carbon nitride nanosheets: insights from molecular simulations. J Water Proc Eng. 2022;46.

  40. Sandil S, Óvári M, Dobosy P, Vetési V, Endrédi A, Takács A, Füzy A, Záray G. Effect of arsenic-contaminated irrigation water on growth and elemental composition of tomato and cabbage cultivated in three different soils, and related health risk assessment. Environ Res. 2021;197.

    Article  PubMed  CAS  Google Scholar 

  41. Maurya AK, Nagamani M, Kang SW, Yeom J-T, Hong J-K, Sung H, Park CH, Uma Maheshwera Reddy P, Reddy NS. Development of artificial neural networks software for arsenic adsorption from an aqueous environment. Environ Res. 2022;203.

  42. Xu W, Liu C, Zhu J-M, Bu H, Tong H, Chen M, Tan D, Gao T, Liu Y. Adsorption of cadmium on clay-organic associations in different pH solutions: the effect of amphoteric organic matter. Ecotoxicol Environ Saf. 2022;236.

    Article  PubMed  CAS  Google Scholar 

  43. Xiao Y, Liu D, Li L, Zhang Z, Luo J-S. Cadmium adsorption in leaf cell walls prevents redistribution to silique in Arabidopsis thaliana ecotypes Jm-1 and Kyo-0. Environ Exp Bot. 2022;194.

    Article  CAS  Google Scholar 

  44. Lai KC, Hiew BYZ, Tee WT, Thangalazhy-Gopakumar S, Gan S, Lee LY. Usage of a new macro-hierarchical graphene sponge in batch adsorption and packed column configuration for efficient decontamination of cadmium in aqueous environment. J Environ Chem Eng. 2021;9(5).

    Article  CAS  Google Scholar 

  45. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov. 2021;22.

    Article  CAS  Google Scholar 

  46. Amin S, Alavi SA, Aghayan H, Yousefnia H. Efficient adsorption of cesium using a novel composite inorganic ion-exchanger based on metal organic framework (Ni[(BDC)(TED)]) modified matal hexacyanoferrate. J Organomet Chem. 2022;961.

    Article  CAS  Google Scholar 

  47. Huo J, Yu G, Wang J. Selective adsorption of cesium (I) from water by Prussian blue analogues anchored on 3D reduced graphene oxide aerogel. Sci Total Environ. 2021;761.

    Article  ADS  PubMed  CAS  Google Scholar 

  48. Shamim MA, Zia H, Zeeshan M, Khan MY, Shahid M. Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: Recent progress. J Environ Chem Eng. 2022;10(1).

    Article  CAS  Google Scholar 

  49. Park B, Ghoreishian SM, Kim Y, Park BJ, Kang S-M, Huh YS. Dual-functional micro-adsorbents: application for simultaneous adsorption of cesium and strontium. Chemosphere. 2021;263.

    Article  PubMed  CAS  Google Scholar 

  50. Shooto ND, Thabede PM. Binary adsorption of chromium and cadmium metal ions by hemp (Cannabis sativa) based adsorbents. Environ Nanotechnol Monitor Manag. 2022;18.

  51. De Beni E, Giurlani W, Fabbri L, Emanuele R, Santini S, Sarti C, Martellini T, Piciollo E, Cincinelli A, Innocenti M. Graphene-based nanomaterials in the electroplating industry: a suitable choice for heavy metal removal from wastewater. Chemosphere. 2022;292.

    Article  PubMed  Google Scholar 

  52. Dash B, Jena SK, Rath SS. Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: experimental and molecular modeling studies. J Mol Liq. 2022;357.

    Article  CAS  Google Scholar 

  53. Wang J, Mao M, Atif S, Chen Y. Adsorption behavior and mechanism of aqueous Cr(III) and Cr(III)-EDTA chelates on DTPA-chitosan modified Fe3O4@SiO2. React Funct Polym. 2020;156.

    Article  CAS  Google Scholar 

  54. Yang J, Chen W, Ma Y, Bright G, Jie X, Zhao H, Zhou H, Jin X. Tailored polyethyleneimine-based fluorescent nanoparticles for functionalized applications in detection and adsorption of cobalt (II). Dyes Pigm. 2022;202.

    Article  CAS  Google Scholar 

  55. Torkaman R, Maleki F, Gholami M, Torab-Mostaedi M, Asadollahzadeh M. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: a systematic literature review. J Water Proc Eng. 2021;44.

  56. Dhiman V, Kondal N. ZnO Nanoadsorbents: a potent material for removal of heavy metal ions from wastewater. Colloid Interface Sci Comm. 2021;41.

  57. Montes de Oca-Palma R, Solache-Ríos M, Jiménez-Reyes M, García-Sánchez JJ, Almazán-Sánchez PT. Adsorption of cobalt by using inorganic components of sediment samples from water bodies. Int J Sediment Res. 2021;36(4): p. 524–531.

  58. Joshi NC, Gururani P. Advances of graphene oxide based nanocomposite materials in the treatment of wastewater containing heavy metal ions and dyes. Curr Res Green Sustain Chem. 2022:100306.

  59. Kara I, Tunc D, Sayin F, Akar ST. Study on the performance of metakaolin based geopolymer for Mn(II) and Co(II) removal. Appl Clay Sci. 2018;161:184–93.

    Article  CAS  Google Scholar 

  60. Pan L, Wang C, Wu W, Li X, Ma S, Li C, Shen Y, Ou J. Bioinspired honeycomb-like 3D architectures self-assembled from chitosan as dual-functional membrane for effective adsorption and detection of copper ion. Microporous Mesoporous Mater. 2022;335.

    Article  CAS  Google Scholar 

  61. Lv B, Zhao Z, Deng X, Fang C, Xing B, Dong B. Hydrodynamics and adsorption performance of liquid–solid fluidized bed with granular activated carbon for removal of copper ions from wastewater. J Clean Prod. 2021;328.

    Article  CAS  Google Scholar 

  62. Kubra KT, Salman MS, Hasan MN, Islam A, Hasan MM, Awual MR. Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater. J Mol Liq. 2021;336.

    Article  CAS  Google Scholar 

  63. Kong H-Y, Wang T-X, Tao Y, Ding X, Han B-H. Crown ether-based hypercrosslinked porous polymers for gold adsorption. Sep Purif Technol. 2022;290.

    Article  CAS  Google Scholar 

  64. Chen L, Tang J, Zhang X, Wang S, Ren Z. A novel benzothiazole modified chitosan with excellent adsorption capacity for Au(III) in aqueous solutions. Int J Biol Macromol. 2021;193:1918–26.

    Article  PubMed  CAS  Google Scholar 

  65. Huang Z, Zhao M, Wang C, Wang S, Dai L, Zhang L, Xu L. Selective removal mechanism of the novel Zr-based metal organic framework adsorbents for gold ions from aqueous solutions. Chem Eng J. 2020;384.

    Article  CAS  Google Scholar 

  66. Bandar S, Anbia M, Salehi S. Comparison of MnO2 modified and unmodified magnetic Fe3O4 nanoparticle adsorbents and their potential to remove iron and manganese from aqueous media. J Alloy Compd. 2021;851.

    Article  CAS  Google Scholar 

  67. Alijani Galangashi M, Masoumi Kojidi SF, Pendashteh A, Abbasi Souraki B, Mirroshandel AA. Removing iron, manganese and ammonium ions from water using greensand in fluidized bed process. J Water Proc Eng. 2021;39.

  68. Khatri N, Tyagi S, Rawtani D. Recent strategies for the removal of iron from water: a review. J Water Proc Eng. 2017;19:291–304.

    Article  Google Scholar 

  69. Chen Y, Lin Q, Wen X, He J, Luo H, Zhong Q, Wu L, Li J. Simultaneous adsorption of As(III) and Pb(II) by the iron-sulfur codoped biochar composite: competitive and synergistic effects. J Environ Sci. 2023;125:14–25.

    Article  CAS  Google Scholar 

  70. Vareda JP, Valente AJM, Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manage. 2019;246:101–18.

    Article  PubMed  CAS  Google Scholar 

  71. Kasirajan R, Bekele A, Girma E. Adsorption of lead (Pb-II) using CaO-NPs synthesized by solgel process from hen eggshell: response surface methodology for modeling, optimization and kinetic studies. S Afr J Chem Eng. 2022;40:209–29.

    Google Scholar 

  72. Dinh V-P, Nguyen D-K, Luu T-T, Nguyen Q-H, Tuyen LA, Phong DD, Kiet HAT, Ho T-H, Nguyen TTP, Xuan TD, Hue PT, Hue NTN.Adsorption of Pb(II) from aqueous solution by pomelo fruit peel-derived biochar. Mater Chem Phys. 2022;126105.

  73. Chin JF, Heng ZW, Teoh HC, Chong WC, Pang YL. Recent development of magnetic biochar crosslinked chitosan on heavy metal removal from wastewater – modification, application and mechanism. Chemosphere. 2022;291.

    Article  PubMed  CAS  Google Scholar 

  74. Gupta K, Joshi P, Gusain R, Khatri OP. Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord Chem Rev. 2021;445.

    Article  CAS  Google Scholar 

  75. Li Y, Huang H, Xu Z, Ma H, Guo Y. Mechanism study on manganese(II) removal from acid mine wastewater using red mud and its application to a lab-scale column. J Clean Prod. 2020;253.

    Article  CAS  Google Scholar 

  76. Chang Q, Ali A, Su J, Wen Q, Bai Y, Gao Z, Simultaneous removal of nitrate, manganese, and tetracycline by Zoogloea sp. MFQ7: adsorption mechanism of tetracycline by biological precipitation. Bioresource Technol. 2021;340:125690.

  77. Lin Z, Yuan P, Yue Y, Bai Z, Zhu H, Wang T, Bao X. Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing dissolved aromatic organic compounds and metal ions. Sci Total Environ. 2020;698.

    Article  ADS  PubMed  CAS  Google Scholar 

  78. Rudi NN, Muhamad MS, Te Chuan L, Alipal J, Omar S, Hamidon N, Abdul Hamid NH, Mohamed Sunar N, Ali R, Harun H. Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon. 2020;6(9).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ferreira LC, Ferreira LC, Cardoso VL, Filho UC. Mn(II) removal from water using emulsion liquid membrane composed of chelating agents and biosurfactant produced in loco. J Water Proc Eng. 2019;29.

  80. Gao Z, Ali A, Su J, Chang Q, Bai Y, Wang Y, Liu Y. Bioaugmented removal of 17β-estradiol, nitrate and Mn(II) by polypyrrole@corn cob immobilized bioreactor: Performance optimization, mechanism, and microbial community response. Environ Pollut. 2022;299.

    Article  PubMed  CAS  Google Scholar 

  81. Sahu MK, Patel RK, Kurwadkar S. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite. J Contam Hydrol. 2022;246.

    Article  PubMed  CAS  Google Scholar 

  82. Li R, Qi L, Ibeanusi V, Badisa V, Brooks S, Chen G. Reduction and bacterial adsorption of dissolved mercuric ion by indigenous bacteria at the Oak Ridge Reservation site. Chemosphere. 2021;280.

    Article  PubMed  CAS  Google Scholar 

  83. Luo Z, Jia T, Liu Q, Song Y, Zhou M, Ma X, Wu J, Qin Z, Wu X. Development of CuInS2/g-C3N4 nanolayer for efficient adsorption of elemental mercury from coal combustion flue gas. Chem Eng J. 2021;426.

    Article  CAS  Google Scholar 

  84. Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari AP, Kim HY, Joshi MK. Technological trends in heavy metals removal from industrial wastewater: a review. J Environ Chem Eng. 2021;9(4).

    Article  CAS  Google Scholar 

  85. El Kaim BR, El Bachraoui F, El Ibrahimi B, Abou Oualid H, Kassab Z, Giácoman-Vallejos G, Sillanpää M, Agunaou M, Soufiane A, Abdellaoui Y. Mechanistic understanding of Nickel(II) adsorption onto fluorapatite-based natural phosphate via Rietveld refinement combined with Monte Carlo simulations. J Solid State Chem. 2022;310.

    Article  Google Scholar 

  86. Mehdi B, Belkacemi H, Brahmi-Ingrachen D, Braham LA, Muhr L. Study of nickel adsorption on NaCl-modified natural zeolite using response surface methodology and kinetics modeling. Groundw Sustain Dev. 2022;17.

    Article  Google Scholar 

  87. Nicomel NR, Otero-Gonzalez L, Folens K, Mees B, Hennebel T, Du Laing G. Selective and enhanced nickel adsorption from sulfate- and calcium-rich solutions using chitosan. Sep Purif Technol. 2021;276.

    Article  CAS  Google Scholar 

  88. Feng X, Long R, Wang L, Liu C, Bai Z, Liu X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep Purif Technol. 2022;284.

    Article  CAS  Google Scholar 

  89. El Ouardi Y, Giove A, Laatikainen M, Branger C, Laatikainen K. Benefit of ion imprinting technique in solid-phase extraction of heavy metals, special focus on the last decade. J Environ Chem Eng. 2021;9(6).

    Article  Google Scholar 

  90. Jiménez-López BA, Leyva-Ramos R, Salazar-Rábago JJ, Jacobo-Azuara A, Aragón-Piña A, Adsorption of selenium (iv) oxoanions on calcined layered double hydroxides of Mg-Al-CO3 from aqueous solution. Effect of calcination and reconstruction of lamellar structure. Environ Nanotechnol Monitor Manag. 2021;16:100580.

  91. Li H, Zhou M, Guan E, Li Z. Preparation of wheat bran-titanium dioxide (TiO2) composite and its application for selenium adsorption. J Cereal Sci. 2021;99.

    Article  CAS  Google Scholar 

  92. Chalastara K, Demopoulos GP. Selenate Se(VI) reduction to elemental selenium on heterojunctioned rutile/brookite nano-photocatalysts with enhanced charge utilization. Chem Eng J. 2022;437.

    Article  CAS  Google Scholar 

  93. Ruj B, Bishayee B, Chatterjee RP, Mukherjee A, Saha A, Nayak J, Chakrabortty S. An economical strategy towards the managing of selenium pollution from contaminated water: a current state-of-the-art review. J Environ Manage. 2022;304.

    Article  PubMed  CAS  Google Scholar 

  94. Zeng Q, Sun W, Zhong H, He Z. Efficient and selective removal of Ag+ as nano silver particles by the composite of SiO2 supported nano ferrous oxalate. Environ Res. 2021;202.

    Article  PubMed  CAS  Google Scholar 

  95. Netto MS, Oliveira JS, Salau NPG, Dotto GL. Analysis of adsorption isotherms of Ag+, Co+2, and Cu+2 onto zeolites using computational intelligence models. J Environ Chem Eng. 2021;9(1).

    Article  CAS  Google Scholar 

  96. Pan X-H, Fu L-X, Wang H, Xue Y, Zu J-H. Synthesis of novel sulfydryl-functionalized chelating adsorbent and its application for selective adsorption of Ag(I) under high acid. Sep Purif Technol. 2021;271.

    Article  CAS  Google Scholar 

  97. Imdad S, Dohare RK. A Critical Review On Heavy Metals Removal Using Ionic Liquid Membranes From The Industrial Wastewater. Chemical Engineering and Processing - Process Intensification. 2022;173.

    Article  CAS  Google Scholar 

  98. Mariana M, HPS AK, Mistar EM, Yahya EB, Alfatah T, Danish M, Amayreh M.Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J Water Proc Eng. 2021;43:102221.

  99. Yang L, Luo X, Yan L, Zhou Y, Yu S, Ju H, Wang Y, Zhang L. Efficient selective adsorption of uranium using a novel eco-friendly chitosan-grafted adenosine 5′-monophosphate foam. Carbohyd Polym. 2022;285.

    Article  CAS  Google Scholar 

  100. Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR. Adsorption of uranium by diethylenetriamine functionalized magnetic mesoporous silica. Environmental Nanotechnology, Monitoring & Management. 2021;16.

    Article  CAS  Google Scholar 

  101. Zhu M, Liu L, Feng J, Dong H, Zhang C, Ma F, Wang Q. Efficient uranium adsorption by amidoximized porous polyacrylonitrile with hierarchical pore structure prepared by freeze-extraction. J Mol Liq. 2021;328.

    Article  CAS  Google Scholar 

  102. Liu W, Wang Q, Wang H, Xin Q, Hou W, Hu E, Lei Z. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand. Chemosphere. 2022;287.

    Article  PubMed  CAS  Google Scholar 

  103. Sun Y, Zeng B, Dai Y, Liang X, Zhang L, Ahmad R, Su X. Modification of sludge-based biochar using air roasting-oxidation and its performance in adsorption of uranium(VI) from aqueous solutions. J Colloid Interface Sci. 2022;614:547–55.

    Article  ADS  PubMed  CAS  Google Scholar 

  104. Tian Y, Liu L, Ma F, Zhu X, Dong H, Zhang C, Zhao F. Synthesis of phosphorylated hyper-cross-linked polymers and their efficient uranium adsorption in water. J Hazard Mater. 2021;419.

    Article  PubMed  CAS  Google Scholar 

  105. Lee G, Lee W. Adsorption of uranium from groundwater using heated aluminum oxide particles. Journal of Water Process Engineering. 2021;40:101790.

  106. Razzak SA, Faruque MO, Alsheikh Z, Alsheikhmohamad L, Alkuroud D, Alfayez A, Hossain SMZ, Hossain MM. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environmental Advances. 2022;7.

    Article  CAS  Google Scholar 

  107. Jiang K, Liu K, Peng Q, Zhou M. Adsorption of Pb(II) and Zn(II) ions on humus-like substances modified montmorillonite. Colloids Surf, A. 2021;631.

    Article  CAS  Google Scholar 

  108. O’Connor KF, Al-Abed SR, Hordern S, Pinto PX. Assessing the efficiency and mechanism of zinc adsorption onto biochars from poultry litter and softwood feedstocks. Bioresource Technology Reports. 2022;18.

    Article  Google Scholar 

  109. Meseldzija S, Petrovic J, Onjia A, Volkov-Husovic T, Nesic A, Vukelic N. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J Ind Eng Chem. 2019;75:246–52.

    Article  CAS  Google Scholar 

  110. Chau TP, Rajkumar RS, Aloufi A, Krishnan R, Tharifkhan SA. Textile effluents decolourization potential of metal tolerant Aspergillus species and optimization of biomass concentration and temperature. Environ Res. 2023;232.

  111. Dev VV, Baburaj G, Antony S, Arun V, Krishnan KA. Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J Clean Prod. 2020;255.

    Article  CAS  Google Scholar 

  112. Abdelmegeed AF, Sayed M, Abbas M, Abdel Moniem SM, Farag RS, Sayed AZ, Naga SM. Synthesis of functionalized superparamagnetic nanoparticles as highly efficient nanoadsorbents: removal of heavy metals from industrial wastewater sample as a case study. Inorg Chem Commun. 2023;155.

    Article  CAS  Google Scholar 

  113. Sezgin N, Balkaya N. Adsorption of heavy metals from industrial wastewater by using polyacrylic acid hydrogel. Desalin Water Treat. 2015;57(6):2466–80.

    Article  Google Scholar 

  114. Chen P, Wu J, Li L, Yang Y, Cao J. Modified fly ash as an effect adsorbent for simultaneous removal of heavy metal cations and anions in wastewater. Appl Surf Sci. 2023;624.

    Article  CAS  Google Scholar 

  115. Sthiannopkao S, Sreesai S. Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater. J Environ Manage. 2009;90(11):3283–9.

    Article  PubMed  CAS  Google Scholar 

  116. Nazari B, Abdolalian S, Taghavijeloudar M. An environmentally friendly approach for industrial wastewater treatment and bio-adsorption of heavy metals using Pistacia soft shell (PSS) through flocculation-adsorption process. Environ Res. 2023;235.

    Article  PubMed  CAS  Google Scholar 

  117. Adesida AA, Carrier A, Adams M, Walker TR, Oakes K, Nganou C, Ehsan MF, Zhang X. Simultaneous degradation of persistent organic pollutants and heavy metal removal via an electrochemical filtration system: a case study on a pulp mill wastewater effluent. Case Studies in Chemical and Environmental Engineering. 2022;6.

    Article  CAS  Google Scholar 

  118. Makhanya BN, Nyandeni N, Ndulini SF, Mthembu MS. Application of green microalgae biofilms for heavy metals removal from mine effluent. Physics and Chemistry of the Earth, Parts A/B/C. 2021;124.

    Article  Google Scholar 

  119. Hsu C-J, Xiao Y-Z, Chung A, Hsi H-C. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption. Sci Total Environ. 2023;855.

    Article  ADS  PubMed  CAS  Google Scholar 

  120. Vargas-Solano SV, Rodríguez-González F, Martínez-Velarde R, Morales-García SS, Jonathan MP. Removal of heavy metals present in water from the Yautepec River Morelos México, using Opuntia ficus-indica mucilage. Environmental Advances. 2022;7.

    Article  CAS  Google Scholar 

  121. Pathania D, Sharma G, Naushad M, Kumar A. Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce (IV) silicophosphate: photocatalytic and antimicrobial applications. J Ind Eng Chem. 2014;20(5):3596–603.

    Article  CAS  Google Scholar 

  122. Sharma G, Pathania D, Naushad M, Kothiyal N. Fabrication, characterization and antimicrobial activity of polyaniline Th (IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J. 2014;251:413–21.

    Article  CAS  Google Scholar 

  123. Shon H, Phuntsho S, Chaudhary D, Vigneswaran S, Cho J. Nanofiltration for water and wastewater treatment–a mini review. Drinking Water Engineering and Science. 2013;6(1):47–53.

    Article  CAS  Google Scholar 

  124. Pohl A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 2020;231(10):503.

    Article  ADS  CAS  Google Scholar 

  125. Tran T-K, Leu H-J, Chiu K-F, Lin C-Y. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J Chin Chem Soc. 2017;64(5):493–502.

    Article  CAS  Google Scholar 

  126. Rojas-Cervantes ML, Castillejos E. Perovskites as catalysts in advanced oxidation processes for wastewater treatment. Catalysts. 2019;9(3):230.

    Article  Google Scholar 

  127. Medfu Tarekegn M, Zewdu Salilih F, Ishetu AI. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food & Agriculture. 2020;6(1):1783174.

    Article  Google Scholar 

  128. Pandey LM. Surface engineering of nano-sorbents for the removal of heavy metals: interfacial aspects. J Environ Chem Eng. 2021;9(1).

    Article  MathSciNet  CAS  Google Scholar 

  129. Cooney DO.Adsorption design for wastewater treatment. CRC press.1998.

  130. Sočo E, Papciak D, Michel MM, Pająk D, Domoń A, Kupiec B. Characterization of the physical, chemical, and adsorption properties of coal-fly-ash–hydroxyapatite composites. Minerals. 2021;11(7):774.

    Article  ADS  Google Scholar 

  131. Tang C, Shu Y, Zhang R, Li X, Song J, Li B, Zhang Y, Ou D. Comparison of the removal and adsorption mechanisms of cadmium and lead from aqueous solution by activated carbons prepared from Typha angustifolia and Salix matsudana. RSC Adv. 2017;7(26):16092–103.

    Article  ADS  CAS  Google Scholar 

  132. Dhaouadi F, Sellaoui L, Reynel-Ávila HE, Landín-Sandoval V, Mendoza-Castillo DI, Jaime-Leal JE, Lima EC, Bonilla-Petriciolet A, Lamine AB. Adsorption mechanism of Zn2+, Ni2+, Cd2+, and Cu2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling. Environ Sci Pollut Res. 2021;28(24):30943–54.

    Article  CAS  Google Scholar 

  133. Tripathi A, Ranjan MR. Heavy metal removal from wastewater using low cost adsorbents. J Bioremed Biodeg. 2015;6(6):315.

    Article  Google Scholar 

  134. Nithya R, Thirunavukkarasu A, Sathya AB, Sivashankar R. Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environ Chem Lett. 2021;19(2):1275–94.

    Article  CAS  Google Scholar 

  135. Xu Z, Zhang Q, Li X, Huang X. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chem Eng J. 2022;429.

    Article  CAS  Google Scholar 

  136. Fiyadh SS, AlSaadi MA, Jaafar WZ, AlOmar MK, Fayaed SS, Mohd NS, Hin LS, El-Shafie A. Review on heavy metal adsorption processes by carbon nanotubes. J Clean Prod. 2019;230:783–93.

    Article  CAS  Google Scholar 

  137. Rathi BS, Kumar PS. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut. 2021;280.

    Article  PubMed  CAS  Google Scholar 

  138. Bobade V, Eshtiagi N. Heavy metals removal from wastewater by adsorption process: a review. In Asia Pacific Confederation of Chemical Engineering Congress. 2015.

  139. Ihsanullah I, Sajid M, Khan S, Bilal M.Aerogel-based adsorbents as emerging materials for the removal of heavy metals from water: progress, challenges, and prospects. Separation Purification Technol. 2022;120923.

  140. Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ Sci Pollut Res. 2021;28(8):9050–66.

    Article  CAS  Google Scholar 

  141. Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res. 2022.

  142. Ibrahim Q, Creedon L, Gharbia S. A literature review of modelling and experimental studies of water treatment by adsorption processes on nanomaterials. Membranes. 2022;12(4):360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Pan JH, Zhang X, Du AJ, Bai H, Ng J, Sun D. A hierarchically assembled mesoporous ZnO hemisphere array and hollow microspheres for photocatalytic membrane water filtration. Phys Chem Chem Phys. 2012;14(20):7481–9.

    Article  PubMed  CAS  Google Scholar 

  144. Sotomayor FJ, Cychosz KA, Thommes M. Characterization of micro/mesoporous materials by physisorption: concepts and case studies. Acc Mater Surf Res. 2018;3(2):34–50.

    Google Scholar 

  145. Welker RW. Basics and sampling of particles for size analysis and identification. In: Developments in Surface Contamination and Cleaning. Elsevier; 2012. p. 1–80.

    Google Scholar 

  146. Matouq M, Jildeh N, Qtaishat M, Hindiyeh M, Al Syouf MQ. The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. J Environ Chem Eng. 2015;3(2):775–84.

    Article  CAS  Google Scholar 

  147. Renu MA, Singh K, Upadhyaya S, Dohare R. Removal of heavy metals from wastewater using modified agricultural adsorbents. Materials Today: Proceedings. 2017;4(9):10534–8.

    Google Scholar 

  148. Zhang F, Li J, Tan J, Wang B, Huang F. Advance of the treatment of heavy metal wastewater by adsorption. Chem Ind Eng Prog 2013;32(11):2749–56.

  149. Qasem NA, Mohammed RH, Lawal DU. Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water. 2021;4(1):1–15.

    Google Scholar 

  150. Arora R. Adsorption of heavy metals–a review. Materials Today: Proceedings. 2019;18:4745–50.

    CAS  Google Scholar 

  151. Qiu B, Tao X, Wang H, Li W, Ding X, Chu H. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. J Anal Appl Pyrol. 2021;155.

    Article  CAS  Google Scholar 

  152. Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Nguyen XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review. Chemosphere. 2022;287.

    Article  PubMed  CAS  Google Scholar 

  153. Mahanty S, Sarkar A, Chaudhuri P, Darbha GK. Mycosynthesized magnetic iron-oxide nanoparticles for the remediation of heavy metals− an insight into the mechanism of adsorption, process optimization using algorithmic approach and its application for the treatment of groundwater. Environ Nanotechnol Monitor Manag. 2023;100854.

  154. Ugwu E, Othmani A, and Nnaji C. A review on zeolites as cost-effective adsorbents for removal of heavy metals from aqueous environment. Int J Environ Sci Technol. 2021;1–24.

  155. Chen X, Hossain MF, Duan C, Lu J, Tsang YF, Islam MS, Zhou Y. Isotherm models for adsorption of heavy metals from water - a review. Chemosphere. 2022;307.

    Article  PubMed  CAS  Google Scholar 

  156. Gao X, Hassan I, Peng Y, Huo S, Ling L. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: a review. J Clean Prod. 2021;319.

    Article  CAS  Google Scholar 

  157. Horsfall Jnr M, Spiff A.Effect of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by caladium bicolor (Wild Cocoyam) biomass. Electronic J Biotechnol. 2005;8.(ISSN: 0717–3458).

  158. Yang Y, Wang Y, Li X, Xue C, Dang Z, Zhang L, Yi X. Effects of synthesis temperature on ε-MnO2 microstructures and performance: selective adsorption of heavy metals and the mechanism onto (100) facet compared with (001). Environ Pollut. 2022;315.

    Article  PubMed  CAS  Google Scholar 

  159. Mo Z, Tai D, Zhang H, Shahab A.A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem Eng J. 2022;136320.

  160. Dev VV, Nair KK, Baburaj G, Krishnan KA. Pushing the boundaries of heavy metal adsorption: a commentary on strategies to improve adsorption efficiency and modulate process mechanisms. Colloid and Interface Science Communications. 2022;49.

    Article  CAS  Google Scholar 

  161. Bilal M, Ihsanullah I, Younas M, Shah MUH. Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep Purif Technol. 2021;278.

    Article  Google Scholar 

  162. Lekshmi R, Rejiniemon T, Sathya R, Kuppusamy P, Al-Mekhlafi FA, Wadaan MA, Rajendran P. Adsorption of heavy metals from the aqueous solution using activated biomass from Ulva flexuosa. Chemosphere. 2022;306.

    Article  Google Scholar 

  163. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Engineering and Technology. 2021;4.

    Article  Google Scholar 

  164. Wijeyawardana P, Nanayakkara N, Gunasekara C, Karunarathna A, Law D, Pramanik BK. Improvement of heavy metal removal from urban runoff using modified pervious concrete. Sci Total Environ. 2022;815.

    Article  ADS  PubMed  CAS  Google Scholar 

  165. Annan K, Dickson RA, Amponsah IK, Nooni IK. The heavy metal contents of some selected medicinal plants sampled from different geographical locations. Pharmacognosy Res. 2013;5(2):103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ.Heavy metal toxicity and the environment. Mol Clin Environ Toxicol. 2012;133–164.

  167. Adamu SJ, Babayo AU, Firuza BM, Muhammad RH. An assessment of copper (Cu) concentration in filtered and unfiltered water from coal mine and residential areas of Maiganga Coal Mining Environment. Gombe-Nigeria International Journal of Environmental Technology. 2017;1(1):1–13.

    Google Scholar 

  168. Santoro S, Estay H, Avci AH, Pugliese L, Ruby-Figueroa R, Garcia A, Aquino M, Nasirov S, Straface S, Curcio E. Membrane technology for a sustainable copper mining industry: the Chilean paradigm. Cleaner Engineering and Technology. 2021;2.

    Article  Google Scholar 

  169. Kavitha N, Palanivelu K. Recovery of copper(II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste. J Membr Sci. 2012;415–416:663–9.

    Article  Google Scholar 

  170. Kahar INS, Othman N, Noah NFM, Suliman SS. Recovery of copper and silver from industrial e-waste leached solutions using sustainable liquid membrane technology: a review. Environ Sci Pollut Res. 2023;30(25):66445–72.

    Article  CAS  Google Scholar 

  171. Xia S, Song Z, Zhao X, Li J. Review of the recent advances in the prevention, treatment, and resource recovery of acid mine wastewater discharged in coal mines. J Water Proc Eng. 2023;52:103555.

  172. Li T, Bian H, Wang W, Fan X, Tao L, Yu G, Deng S. Removal of low-concentration nickel in electroplating wastewater via incomplete decomplexation by ozonation and subsequent resin adsorption. Chem Eng J. 2022;435.

    Article  CAS  Google Scholar 

  173. Ding W-Q, Labiadh L, Xu L, Li X-Y, Chen C, Fu M-L, Yuan B. Current advances in the detection and removal of organic arsenic by metal-organic frameworks. Chemosphere. 2023;339.

    Article  PubMed  CAS  Google Scholar 

  174. Wei J, Duan M, Li Y, Nwankwegu AS, Ji Y, Zhang J. Concentration and pollution assessment of heavy metals within surface sediments of the Raohe Basin, China. Sci Rep. 2019;9(1):13100.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  175. Kovár F, Smutná K, Hruška A, Koutník I, Vráblová M. Adsorption and permeability of heavy metals (Fe, Cu, Pb, Zn, Cr, and Cd) onto the adaxial cuticle of Ficus elastica leaf. Sci Hortic. 2023;321.

    Article  Google Scholar 

  176. Xu K, Li L, Huang Z, Tian Z, Li H. Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. Sci Total Environ. 2022;846.

    Article  ADS  PubMed  CAS  Google Scholar 

  177. El-Sayed ME. Nanoadsorbents for water and wastewater remediation. Sci Total Environ. 2020;739.

    Article  ADS  PubMed  CAS  Google Scholar 

  178. Khajeh M, Laurent S, Dastafkan K. Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev. 2013;113(10):7728–68.

    Article  PubMed  CAS  Google Scholar 

  179. Manyangadze M, Chikuruwo N, Chakra C, Narsaiah T, Radhakumari M, Danha G. Enhancing adsorption capacity of nano-adsorbents via surface modification: a review. S Afr J Chem Eng. 2020;31(1):25–32.

    Google Scholar 

  180. Shi M, Xie Q, Li Z-L, Pan Y-F, Yuan Z, Lin L, Xu X-R, Li H-X. Adsorption of heavy metals on biodegradable and conventional microplastics in the Pearl River Estuary. China Environmental Pollution. 2023;322.

    Article  PubMed  CAS  Google Scholar 

  181. Asim U, Husnain SM, Abbas N, Shahzad F, Zafar S, Younis SA, Kim K-H. Microwave-assisted synthesis of MnO2 nanosorbent for adsorptive removal of Cs (I) and Sr (II) from water solutions. Chemosphere. 2022;303.

    Article  PubMed  CAS  Google Scholar 

  182. Almomani F, Bhosale R, Khraisheh M, Almomani T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci. 2020;506.

    Article  CAS  Google Scholar 

  183. Kothavale V, Sharma A, Dhavale R, Chavan V, Shingte S, Selyshchev O, Dongale T, Park H, Zahn D, Salvan G. Carboxyl and thiol-functionalized magnetic nanoadsorbents for efficient and simultaneous removal of Pb (II), Cd (II), and Ni (II) heavy metal ions from aqueous solutions: studies of adsorption, kinetics, and isotherms. J Phys Chem Solids. 2023;172.

    Article  CAS  Google Scholar 

  184. Rahmani Z, Ghaemy M, Olad A. Removal of heavy metals from polluted water using magnetic adsorbent based on κ-carrageenan and N-doped carbon dots. Hydrometallurgy. 2022;213.

    Article  CAS  Google Scholar 

  185. Selvaraj R, Murugesan G, Rangasamy G, Bhole R, Dave N, Pai S, Balakrishna K, Vinayagam R, Varadavenkatesan T. As (III) removal using superparamagnetic magnetite nanoparticles synthesized using Ulva prolifera− optimization, isotherm, kinetic and equilibrium studies. Chemosphere. 2022;308.

    Article  PubMed  CAS  Google Scholar 

  186. Herab AA, Salari D, Ostadrahimi A, Olad A. Preparation of magnetic inulin nanocomposite and its application in the removal of methylene blue and heavy metals from aqueous solution. Mater Chem Phys. 2022;291.

    Article  Google Scholar 

  187. Khamkure S, Bustos-Terrones V, Benitez-Avila NJ, Cabello-Lugo MF, Gamero-Melo P, Garrido-Hoyos SE, Esparza-Schulz JM. Effect of Fe3O4 nanoparticles on magnetic xerogel composites for enhanced removal of fluoride and arsenic from aqueous solution. Water Science and Engineering. 2022;15(4):305–17.

    Article  Google Scholar 

  188. Hassanzadeh-Afruzi F, Esmailzadeh F, Asgharnasl S, Ganjali F, Taheri-Ledari R, Maleki A. Efficient removal of Pb (II)/Cu (II) from aqueous samples by a guanidine-functionalized SBA-15/Fe3O4. Sep Purif Technol. 2022;291.

    Article  CAS  Google Scholar 

  189. Lei T, Jiang X, Zhou Y, Chen H, Bai H, Wang S, Yang X. A multifunctional adsorbent based on 2, 3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions. J Colloid Interface Sci. 2023;636:153–66.

    Article  ADS  PubMed  CAS  Google Scholar 

  190. Zhang J, Li X, Xu H, Zhang W, Feng X, Yao Y, Ma Y, Su L, Ren S, Li S. Removal of Cd2+, Pb2+ and Ni2+ from water by adsorption onto magnetic composites prepared using humic acid from waste biomass. J Clean Prod. 2023;411.

    Article  CAS  Google Scholar 

  191. Samejo S, Baig JA. uddin S, Kazi T G, Afridi H I, Hol A, Ali F I, Hussain S, Akhtar K, Perveen S, Bhutto AA. Green synthesis of iron oxide nanobiocomposite for the adsorptive removal of heavy metals from the drinking water. Mater Chem Phys. 2023;303.

  192. Ahmad SZN, Salleh WNW, Ismail NH, Razali NAM, Hamdan R, Ismail AF. Effects of operating parameters on cadmium removal for wastewater treatment using zeolitic imidazolate framework-L/graphene oxide composite. J Environ Chem Eng. 2021;9(5).

    Article  CAS  Google Scholar 

  193. Peng Z-D, Lin X-M, Zhang Y-L, Hu Z, Yang X-J, Chen C-Y, Chen H-Y, Li Y-T, Wang J-J. Removal of cadmium from wastewater by magnetic zeolite synthesized from natural, low-grade molybdenum. Sci Total Environ. 2021;772.

  194. Ramutshatsha-Makhwedzha D, Mbaya R, Mavhungu ML. Application of activated carbon banana peel coated with al2o3-chitosan for the adsorptive removal of lead and cadmium from wastewater. Materials. 2022;15(3):860.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  195. Cheng S, Liu Y, Xing B, Qin X, Zhang C, Xia H. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J Clean Prod. 2021;314.

    Article  CAS  Google Scholar 

  196. Ahmed A, Ayad MI, Eledkawy MA, Darweesh MA, Elmelegy EM. Removal of iron, zinc, and nickel-ions using nano bentonite and its applications on power station wastewater. Heliyon. 2021;7(2).

  197. Ha HT, Phong PT, Minh TD. Synthesis of iron oxide nanoparticle functionalized activated carbon and its applications in arsenic adsorption. J Anal Methods Chem. 2021;2021:1–9.

    Article  CAS  Google Scholar 

  198. Bakhtiari S, Shahrashoub M, Keyhanpour A. A comprehensive study on single and competitive adsorption-desorption of copper and cadmium using eco-friendly magnetite (Fe3O4) nanoparticles. Korean J Chem Eng. 2022;39(9):2379–93.

    Article  CAS  Google Scholar 

  199. Ahmed W, Mehmood S, Núñez-Delgado A, Ali S, Qaswar M, Shakoor A, Maitlo AA, Chen D-Y. Adsorption of arsenic (III) from aqueous solution by a novel phosphorus-modified biochar obtained from Taraxacum mongolicum Hand-Mazz: adsorption behavior and mechanistic analysis. J Environ Manage. 2021;292.

    Article  PubMed  CAS  Google Scholar 

  200. Dong F-X, Yan L, Zhou X-H, Huang S-T, Liang J-Y, Zhang W-X, Guo Z-W, Guo P-R, Qian W, Kong L-J. Simultaneous adsorption of Cr (VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism. J Hazard Mater. 2021;416.

    Article  PubMed  CAS  Google Scholar 

  201. Egbosiuba TC, Egwunyenga MC, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS, Krikstolaityte V, Veksha A, Wagner M, Lisak G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J Hazard Mater. 2022;423.

    Article  PubMed  CAS  Google Scholar 

  202. Cheng S, Zhao S, Guo H, Xing B, Liu Y, Zhang C, Ma M. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Biores Technol. 2022;343.

    Article  CAS  Google Scholar 

  203. Duan C, Ma T, Wang J, Zhou Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. Journal of Water Process Engineering. 2020;37.

    Article  Google Scholar 

  204. Nazal MK. An overview of carbon-based materials for the removal of pharmaceutical active compounds. Carbon-Based Mater Environ Protect Remed. 2020.

  205. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019;366:608–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, Yang J, Zhang J, Luo L, Zhou Z. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J Environ Manage. 2019;237:128–38.

    Article  PubMed  CAS  Google Scholar 

  207. Melliti A, Yılmaz M, Sillanpää M, Hamrouni B, Vurm R. Low-cost date palm fiber activated carbon for effective and fast heavy metal adsorption from water: characterization, equilibrium, and kinetics studies. Colloids Surf, A. 2023;672.

    Article  CAS  Google Scholar 

  208. Wang J, Wang S. Preparation, modification and environmental application of biochar: a review. J Clean Prod. 2019;227:1002–22.

    Article  CAS  Google Scholar 

  209. Mallakpour S, Khadem E. 8 - Carbon nanotubes for heavy metals removal, in Composite Nanoadsorbents, G.Z. Kyzas and A.C. Mitropoulos, Editors. 2019, Elsevier. p. 181–210.

  210. Han B, Xue X, Xu Y, Zhao Z, Guo E, Liu C, Luo L, Hou H. Preparation of carbon nanotube film with high alignment and elevated density. Carbon. 2017;122:496–503.

    Article  CAS  Google Scholar 

  211. Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb(2+) and Cu(2+)) using CNT dendrimer. J Hazard Mater. 2017;336:146–57.

    Article  PubMed  CAS  Google Scholar 

  212. Zhang Q, Hou Q, Huang G, Fan Q. Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environ Sci Pollut Res. 2020;27(1):190–209.

    Article  Google Scholar 

  213. Mukherjee R, Bhunia P, De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem Eng J. 2016;292:284–97.

    Article  CAS  Google Scholar 

  214. Le TTN, Le VT, Dao MU, Nguyen QV, Vu TT, Nguyen MH, Tran DL, Le HS. Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions. Chem Eng Commun. 2019;206(10):1337–52.

    Article  CAS  Google Scholar 

  215. Mandal S, Calderon J, Marpu SB, Omary MA, Shi SQ. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: characterization, adsorption kinetics, and isotherm studies. J Contam Hydrol. 2021;243.

    Article  PubMed  CAS  Google Scholar 

  216. Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms. Chemosphere. 2021;264.

    Article  PubMed  CAS  Google Scholar 

  217. Liu L, Yue T, Liu R, Lin H, Wang D, Li B. Efficient absorptive removal of Cd(II) in aqueous solution by biochar derived from sewage sludge and calcium sulfate. Biores Technol. 2021;336.

    Article  CAS  Google Scholar 

  218. Anirudhan TS, Sreekumari SS. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J Environ Sci. 2011;23(12):1989–98.

    Article  CAS  Google Scholar 

  219. Dawodu FA, Akpomie KG. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite clay. J Market Res. 2014;3(2):129–41.

    CAS  Google Scholar 

  220. Bhattacharyya KG, Gupta SS. Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Appl Clay Sci. 2008;41(1):1–9.

    Article  CAS  Google Scholar 

  221. Xu C, Feng Y, Li H, Wu R, Ju J, Liu S, Yang Y, Wang B. Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives. J Clean Prod. 2022;344.

    Article  CAS  Google Scholar 

  222. Wu W, Chen Z, Huang Y, Li J, Chen D, Chen N, Su M. Red mud for the efficient adsorption of U(VI) from aqueous solution: influence of calcination on performance and mechanism. J Hazard Mater. 2021;409.

    Article  PubMed  CAS  Google Scholar 

  223. Ankrah AF, Tokay B, Snape CE. Heavy metal removal from aqueous solutions using fly-ash derived zeolite NaP1. International Journal of Environmental Research. 2022;16(2):17.

    Article  ADS  CAS  Google Scholar 

  224. Naiya TK, Bhattacharya AK, Mandal S, Das SK. The sorption of lead(II) ions on rice husk ash. J Hazard Mater. 2009;163(2):1254–64.

    Article  PubMed  CAS  Google Scholar 

  225. Ozsoy HD, Kumbur H. Adsorption of Cu(II) ions on cotton boll. J Hazard Mater. 2006;136(3):911–6.

    Article  PubMed  CAS  Google Scholar 

  226. Wang Q, Wang Y, Yang Z, Han W, Yuan L, Zhang L, Huang X. Efficient removal of Pb(II) and Cd(II) from aqueous solutions by mango seed biosorbent. Chemical Engineering Journal Advances. 2022;11.

    Article  CAS  Google Scholar 

  227. Yaashikaa PR, Senthil Kumar P, Mohan Babu VP, Kanaka Durga R, Manivasagan V, Saranya K, Saravanan A. Modelling on the removal of Cr(VI) ions from aquatic system using mixed biosorbent (Pseudomonas stutzeri and acid treated Banyan tree bark). J Mol Liq. 2019;276:362–70.

    Article  CAS  Google Scholar 

  228. Saravanan A, Karishma S, Kumar PS, Varjani S, Yaashikaa PR, Jeevanantham S, Ramamurthy R, Reshma B. Simultaneous removal of Cu(II) and reactive green 6 dye from wastewater using immobilized mixed fungal biomass and its recovery. Chemosphere. 2021;271.

    Article  PubMed  CAS  Google Scholar 

  229. Saravanan A, Kumar PS, Yaashikaa PR, Karishma S, Jeevanantham S, Swetha S. Mixed biosorbent of agro waste and bacterial biomass for the separation of Pb(II) ions from water system. Chemosphere. 2021;277.

    Article  PubMed  CAS  Google Scholar 

  230. Saravanan A, Senthil Kumar P, Preetha B. Optimization of process parameters for the removal of chromium(VI) and nickel(II) from aqueous solutions by mixed biosorbents (custard apple seeds and Aspergillus niger) using response surface methodology. Desalin Water Treat. 2016;57(31):14530–43.

    Article  CAS  Google Scholar 

  231. Kumar KA, Yeshwanth M, Kumar BK, Panwar J, Gupta S. Functionalized Cu-based metal oxide nanoparticles with enhanced Cd+2 adsorption capacity and their ecotoxicity assessment by molecular docking. J Environ Manage. 2022;307.

    Article  Google Scholar 

  232. Jayalakshmi R, Jeyanthi J, Aswin Sidhaarth KR. Versatile application of cobalt ferrite nanoparticles for the removal of heavy metals and dyes from aqueous solution. Environmental Nanotechnology, Monitoring & Management. 2022;17.

    Article  CAS  Google Scholar 

  233. Mnasri-Ghnimi S, Frini-Srasra N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl Clay Sci. 2019;179.

    Article  CAS  Google Scholar 

  234. Otunola BO, Ololade OO. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ Technol Innov. 2020;18.

    Article  Google Scholar 

  235. Zhang T, Wang W, Zhao Y, Bai H, Wen T, Kang S, Song G, Song S, Komarneni S. Removal of heavy metals and dyes by clay-based adsorbents: from natural clays to 1D and 2D nano-composites. Chem Eng J. 2021;420.

    Article  CAS  Google Scholar 

  236. Jangkorn S, Youngme S, Praipipat P. Comparative lead adsorptions in synthetic wastewater by synthesized zeolite A of recycled industrial wastes from sugar factory and power plant. Heliyon. 2022;8(4).

  237. Shahrashoub M, Bakhtiari S, Afroosheh F, Googheri MS. Recovery of iron from direct reduction iron sludge and biosynthesis of magnetite nanoparticles using green tea extract. Colloids Surf, A. 2021;622.

    Article  CAS  Google Scholar 

  238. Anastopoulos I, Bhatnagar A, Hameed BH, Ok YS, Omirou M. A review on waste-derived adsorbents from sugar industry for pollutant removal in water and wastewater. J Mol Liq. 2017;240:179–88.

    Article  CAS  Google Scholar 

  239. Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage. 2018;227:395–405.

    Article  PubMed  CAS  Google Scholar 

  240. Ahmaruzzaman M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci. 2011;166(1–2):36–59.

    Article  PubMed  CAS  Google Scholar 

  241. Imran-Shaukat M, Wahi R, Ngaini Z. The application of agricultural wastes for heavy metals adsorption: a meta-analysis of recent studies. Bioresource Technology Reports. 2022;17.

    Article  CAS  Google Scholar 

  242. Tsade H, Murthy HA, Muniswamy D. Bio-sorbents from agricultural wastes for eradication of heavy metals: a review. J Mater Environ Sci. 2020;11:1719–35.

    CAS  Google Scholar 

  243. Oskam G. Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol. 2006;37(3):161–4.

    Article  CAS  Google Scholar 

  244. Naseem T, Durrani T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environmental Chemistry and Ecotoxicology. 2021;3:59–75.

    Article  CAS  Google Scholar 

  245. Nair GM, Sajini T, Mathew B. Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open. 2022;5.

    Article  Google Scholar 

  246. Tarekegn MM, Hiruy AM, Dekebo AH. Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions. RSC Adv. 2021;11(30):18539–51.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  247. Somu P, Paul S. Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: a rational strategy for wastewater treatment. J Chem Technol Biotechnol. 2018;93(10):2962–76.

    Article  CAS  Google Scholar 

  248. Nguyen TMT, Do TPT, Hoang TS, Nguyen NV, Pham HD, Nguyen TD, Pham TNM, Le TS, Pham TD. Adsorption of anionic surfactants onto alumina: characteristics, mechanisms, and application for heavy metal removal. International Journal of Polymer Science. 2018;2018:2830286.

    Article  Google Scholar 

  249. Chowdhury SR, Yanful EK. Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J Environ Manage. 2010;91(11):2238–47.

    Article  PubMed  CAS  Google Scholar 

  250. Al-Khafaji MAA, Al-Refai’a RAK, Al-Zamely OMY. Green synthesis of copper nanoparticles using artemisia plant extract. Mater Today: Proc. 2022;49:2831–5.

  251. Kugarajah V, Hadem H, Ojha A K, Ranjan S, Dasgupta N, Mishra BN, Dharmalingam S. Chapter 1 - Fabrication of nanomaterials, in Food, Medical, and Environmental Applications of Nanomaterials, K. Pal, et al., Editors. 2022, Elsevier. p. 1–39.

  252. Aslam M, Abdullah AZ, Rafatullah M. Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J Ind Eng Chem. 2021;98:1–16.

    Article  CAS  Google Scholar 

  253. Behzad F, Naghib SM, Kouhbanani MAJ, Tabatabaei SN, Zare Y, Rhee KY. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J Ind Eng Chem. 2021;94:92–104.

  254. Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem. 2021;111:167–77.

    Article  CAS  Google Scholar 

  255. Kumar S, Basumatary IB, Sudhani HPK, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: a state-of-the-art review. Trends Food Sci Technol. 2021;112:651–66.

    Article  CAS  Google Scholar 

  256. Mohammadzadeh V, Barani M, Amiri MS, Taghavizadeh Yazdi ME, Hassanisaadi M, Rahdar A, Varma RS. Applications of plant-based nanoparticles in nanomedicine: a review. Sustain Cities Soc. 2022;25.

    CAS  Google Scholar 

  257. • Sunny NE, Mathew SS, Chandel N, Saravanan P, Rajeshkannan R, Rajasimman M, Vasseghian Y, Rajamohan N, Kumar SV.Green synthesis of titanium dioxide nanoparticles using plant biomass and their applications- a review. Chemosphere. 2022;300:134612.

  258. •• Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov. 2022;26:102336.

  259. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, Webster TJ. Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. Int J Nanomedicine. 2020;15:275–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–67.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  261. •• Selvaraj R, Pai S, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G.A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere. 2022;308:136331.

  262. Wasilewska A, Klekotka U, Zambrzycka M, Zambrowski G, Święcicka I, Kalska-Szostko B. Physico-chemical properties and antimicrobial activity of silver nanoparticles fabricated by green synthesis. Food Chem. 2023;400.

    Article  PubMed  CAS  Google Scholar 

  263. Vankudoth S, Dharavath S, Veera S, Maduru N, Chada R, Chirumamilla P, Gopu C, Taduri S. Green synthesis, characterization, photoluminescence and biological studies of silver nanoparticles from the leaf extract of Muntingia calabura. Biochem Biophys Res Commun. 2022;630:143–50.

    Article  PubMed  CAS  Google Scholar 

  264. Jawed A, Golder AK, Pandey LM. Synthesis of iron oxide nanoparticles mediated by Camellia sinensis var. Assamica for Cr(VI) adsorption and detoxification. Bioresource Technol. 2023;376:128816.

  265. • Bahrulolum H, Nooraei S, Javanshir N, Tarrahimofrad H, Mirbagheri VS, Easton AJ, Ahmadian G.Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J Nanobiotechnol. 2021;19(1):86.

  266. Guilger-Casagrande M, de Lima R. Synthesis of silver nanoparticles mediated by fungi: a review. Front Bioeng Biotechnol. 2019;7:287.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O. Extracellular biosynthesis of copper and copper oxide nanoparticles by <i>Stereum hirsutum</i>, a native white-rot fungus from Chilean forests. J Nanomater. 2015;2015.

    Article  Google Scholar 

  268. Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere. 2022;293.

    Article  PubMed  CAS  Google Scholar 

  269. Shafey AME. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: a review. Green Processing and Synthesis. 2020;9(1):304–39.

    Article  Google Scholar 

  270. Caroling G, Priyadharshini MN, Vinodhini E, Ranjitham AM, Shanthi P. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. Int J Pharm Biol Sci. 2015;5(2):25–43.

    CAS  Google Scholar 

  271. Semalti P, Saroha J, Tawale JS, Sharma SN. Visible-light driven noble metal (Au, Ag) permeated multicomponent Cu2ZnSnS4 nanocrystals: a potential low-cost photocatalyst for textile effluents and heavy metal removal. Environ Res. 2023;217.

    Article  PubMed  CAS  Google Scholar 

  272. Haspulat Taymaz B, KamiŞ H, YoldaŞ Ö. Photocatalytic degradation of malachite green dye using zero valent iron doped polypyrrole. Environmental Engineering Research. 2022;27(2).

    Article  Google Scholar 

  273. Samadi Z, Yaghmaeian K, Mortazavi-Derazkola S, Khosravi R, Nabizadeh R, Alimohammadi M. Facile green synthesis of zero-valent iron nanoparticles using barberry leaf extract (GnZVI@BLE) for photocatalytic reduction of hexavalent chromium. Bioorg Chem. 2021;114.

    Article  PubMed  CAS  Google Scholar 

  274. Khan ZUH, Shah NS, Iqbal J, Khan AU, Imran M, Alshehri SM, Muhammad N, Sayed M, Ahmad N, Kousar A, Ashfaq M, Howari F, Tahir K. Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: ecotoxicology study of brilliant green dye and its mechanistic degradation pathways. J Mol Liq. 2020;319.

    Article  CAS  Google Scholar 

  275. Huang-Mu L, Devanesan S, Farhat K, Kim W, Sivarasan G. Improving the efficiency of metal ions doped Fe2O3 nanoparticles: photocatalyst for removal of organic dye from aqueous media. Chemosphere. 2023;337.

    Article  PubMed  CAS  Google Scholar 

  276. Abbas S, Nasreen S, Haroon A, Ashraf MA. Synhesis of silver and copper nanoparticles from plants and application as adsorbents for naphthalene decontamination. Saudi Journal of Biological Sciences. 2020;27(4):1016–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Ahmad A, Khan M, Khan S, Luque R, Abualnaja KM, Alduaij OK, Yousef TA. Bio-construction of CuO nanoparticles using Texas sage plant extract for catalytical degradation of methylene blue via photocatalysis. J Mol Struct. 2022;1256.

    Article  CAS  Google Scholar 

  278. Aryan R, Mehata MS. Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chem Phys Lett. 2021;778:138760.

  279. Chandhirasekar K, Thendralmanikandan A, Thangavelu P, Nguyen B-S, Nguyen T-A, Sivashanmugan K, Nareshkumar A, Nguyen V-H. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater Lett. 2021;287.

    Article  CAS  Google Scholar 

  280. Ghazal S, Khandannasab N, Hosseini HA, Sabouri Z, Rangrazi A, Darroudi M. Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceram Int. 2021;47(19):27165–76.

    Article  CAS  Google Scholar 

  281. Hosny M, Fawzy M, El-Badry YA, Hussein EE, Eltaweil AS. Plant-assisted synthesis of gold nanoparticles for photocatalytic, anticancer, and antioxidant applications. J Saudi Chem Soc. 2022;26(2).

    Article  CAS  Google Scholar 

  282. Kambale EK, Nkanga CI, Mutonkole B-PI, Bapolisi AM, Tassa DO, Liesse J-MI, Krause RWM, Memvanga PB. Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea). Heliyon. 2020;6(8).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Kavitha A, Shanmugan S, Awuchi CG, Kanagaraj C, Ravichandran S. Synthesis and enhanced antibacterial using plant extracts with silver nanoparticles: therapeutic application. Inorg Chem Commun. 2021;134.

    Article  CAS  Google Scholar 

  284. Kocak Y, Oto G, Meydan I, Seckin H, Gur T, Aygun A, Sen F. Assessment of therapeutic potential of silver nanoparticles synthesized by Ferula Pseudalliacea rech. F plant Inorganic Chemistry Communications. 2022;140.

    Article  CAS  Google Scholar 

  285. Kolahalam LA, Prasad KRS, Murali Krishna P, Supraja N. Saussurea lappa plant rhizome extract-based zinc oxide nanoparticles: synthesis, characterization and its antibacterial, antifungal activities and cytotoxic studies against Chinese Hamster Ovary (CHO) cell lines. Heliyon. 2021;7(6).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Mamatha KM, Srinivasa Murthy V, Ravikumar CR, Murthy HCA, Kumar VGD, Kumar AN, Jahagirdar AA. Facile green synthesis of Molybdenum oxide nanoparticles using Centella Asiatica plant: its photocatalytic and electrochemical lead sensor applications. Sens Int. 2022;3.

  287. Mehata MS. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Mater Sci Eng, B. 2021;273.

    Article  CAS  Google Scholar 

  288. Melkamu WW, Bitew LT. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon. 2021;7(11):e08459.

  289. Mousa SA, Shalan AE, Hassan HH, Ebnawaled AA, Khairy SA. Enhanced the photocatalytic degradation of titanium dioxide nanoparticles synthesized by different plant extracts for wastewater treatment. J Mol Struct. 2022;1250.

    Article  CAS  Google Scholar 

  290. Nayak SS, Mirgane NA, Shivankar VS, Pathade KB, Wadhawa GC. Degradation of the industrial dye using the nanoparticles synthesized from flowers of plant Ceropegia attenuata. Materials Today: Proceedings. 2021;37:2427–31.

    CAS  Google Scholar 

  291. Oves M, Ahmar Rauf M, Aslam M, Qari HA, Sonbol H, Ahmad I, Sarwar Zaman G, Saeed M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi Journal of Biological Sciences. 2022;29(1):460–71.

    Article  PubMed  CAS  Google Scholar 

  292. Riaz T, Assey N, Javed M, Shahzadi T, Zaib M, Shahid S, Iqbal S, Elkaeed EB, Alzhrani RM, Alsaab HO, Awwad NS, Ibrahium HA, Fatima U. Biogenic plant mediated synthesis of monometallic zinc and bimetallic copper/zinc nanoparticles and their dye adsorption and antioxidant studies. Inorg Chem Commun. 2022;140.

    Article  CAS  Google Scholar 

  293. Sahoo SK, Panigrahi GK, Sahoo A, Pradhan AK, Dalbehera A. Bio-hydrothermal synthesis of ZnO–ZnFe2O4 nanoparticles using Psidium guajava leaf extract: role in waste water remediation and plant immunity. J Clean Prod. 2021;318.

    Article  CAS  Google Scholar 

  294. de França BGM, Degenhardt J, Zevallos Torres LA, de Andrade TVO, Soccol CR. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal Agric Biotechnol. 2020;30.

    Article  Google Scholar 

  295. John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S. Synthesis of bioactive silver nanoparticles by a pseudomonas strain associated with the Antarctic psychrophilic protozoon Euplotes focardii. Mar Drugs. 2020;18(1):38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports. 2017;15:33–40.

    Article  PubMed  PubMed Central  Google Scholar 

  297. Arya A, Gupta K, Chundawat TS, Vaya D. Biogenic synthesis of copper and silver nanoparticles using green alga <i>Botryococcus braunii</i> and its antimicrobial activity. Bioinorg Chem Appl. 2018;2018:7879403.

    Article  PubMed  PubMed Central  Google Scholar 

  298. de Aragão AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araújo MC, Santiago JDAS, Cardoso VS, Quaresma P, de Souza de Almeida Leite JR, da Silva DA. Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem. 2019;12(8):4182–8.

  299. Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 2020;83(1):72–80.

    Article  PubMed  CAS  Google Scholar 

  300. Jaidev LR, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf, B. 2010;81(2):430–3.

    Article  CAS  Google Scholar 

  301. Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S, Ali H, Muhammad SA. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Methods. 2020;174.

    Article  PubMed  CAS  Google Scholar 

  302. Kumar RV, Vinoth S, Baskar V, Arun M, Gurusaravanan P. Synthesis of zinc oxide nanoparticles mediated by Dictyota dichotoma endophytic fungi and its photocatalytic degradation of fast green dye and antibacterial applications. South African J Botany. 2022.

  303. Salem DMSA, Ismail MM, Aly-Eldeen MA. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea. Egypt The Egyptian Journal of Aquatic Research. 2019;45(3):197–204.

    Article  Google Scholar 

  304. Rajeshkumar S, Nandhini NT, Manjunath K, Sivaperumal P, Krishna Prasad G, Alotaibi SS, Roopan SM. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J Mol Struct. 2021;1242.

    Article  CAS  Google Scholar 

  305. Al-Enazi NM. Optimized synthesis of mono and bimetallic nanoparticles mediated by unicellular algal (diatom) and its efficiency to degrade azo dyes for wastewater treatment. Chemosphere. 2022;303.

    Article  PubMed  CAS  Google Scholar 

  306. Singh S, Kapoor D, Khasnabis S, Singh J, Ramamurthy PC. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environ Chem Lett. 2021;19(3):2351–81.

    Article  CAS  Google Scholar 

  307. El-Kammah M, Elkhatib E, Aboukila E. Ecofriendly nanoparticles derived from water industry byproducts for effective removal of Cu (II) from wastewater: adsorption isotherms and Kinetics. Inorganic Chem Commun. 2022;110062.

  308. Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A, Bilal M. Remediation of heavy metals polluted environment using Fe-based nanoparticles: mechanisms, influencing factors, and environmental implications. Environ Pollut. 2020;264.

    Article  PubMed  CAS  Google Scholar 

  309. Ramírez Calderón OA, Abdeldayem OM, Pugazhendhi A, Rene ER. Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Current Pollution Reports. 2020;6(1):8–27.

    Article  Google Scholar 

  310. Bashir A, Malik LA, Ahad S, Manzoor T, Bhat MA, Dar GN, Pandith AH. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett. 2019;17(2):729–54.

    Article  CAS  Google Scholar 

  311. Inyang M, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol. 2015;46:00–00.

    Google Scholar 

  312. Raji Z, Karim A, Karam A, Khalloufi S. Adsorption of heavy metals: mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—a review. Waste. 2023;1(3):775–805.

    Article  Google Scholar 

  313. Nik-Abdul-Ghani NR, Jami MS, Alam MZ. The role of nanoadsorbents and nanocomposite adsorbents in the removal of heavy metals from wastewater: a review and prospect. Pollution. 2021;7(1):153–79.

    CAS  Google Scholar 

  314. Chen R, Zhi C, Yang H, Bando Y, Zhang Z, Sugiur N, Golberg D. Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. J Colloid Interface Sci. 2011;359(1):261–8.

    Article  ADS  PubMed  CAS  Google Scholar 

  315. Sachan D, Ramesh A, Das G. Green synthesis of silica nanoparticles from leaf biomass and its application to remove heavy metals from synthetic wastewater: a comparative analysis. Environmental Nanotechnology, Monitoring & Management. 2021;16.

    Article  CAS  Google Scholar 

  316. Herrera-Barros A, Bitar-Castro N, Villabona-Ortíz Á, Tejada-Tovar C, González-Delgado ÁD. Nickel adsorption from aqueous solution using lemon peel biomass chemically modified with TiO2 nanoparticles. Sustain Cities Soc. 2020;17.

    Google Scholar 

  317. Lin Y, Jin X, Khan NI, Owens G, Chen Z. Bimetallic Fe/Ni nanoparticles derived from green synthesis for the removal of arsenic (V) in mine wastewater. J Environ Manage. 2022;301.

    Article  PubMed  CAS  Google Scholar 

  318. Amin RM, Mahmoud RK, Gadelhak Y, Abo El-Ela FI. Gamma irradiated green synthesized zero valent iron nanoparticles as promising antibacterial agents and heavy metal nano-adsorbents. Environmental Nanotechnology, Monitoring & Management. 2021;16.

    Article  CAS  Google Scholar 

  319. Yang J, Wang S, Xu N, Ye Z, Yang H, Huangfu X. Synthesis of montmorillonite-supported nano-zero-valent iron via green tea extract: enhanced transport and application for hexavalent chromium removal from water and soil. J Hazard Mater. 2021;419.

    Article  PubMed  CAS  Google Scholar 

  320. Machado S, Grosso JP, Nouws HPA, Albergaria JT, Delerue-Matos C. Utilization of food industry wastes for the production of zero-valent iron nanoparticles. Sci Total Environ. 2014;496:233–40.

    Article  ADS  PubMed  CAS  Google Scholar 

  321. Dubey S, Sharma YC. Calotropis procera mediated one pot green synthesis of Cupric oxide nanoparticles (CuO-NPs) for adsorptive removal of Cr(VI) from aqueous solutions. Appl Organomet Chem. 2017;31(12).

    Article  Google Scholar 

  322. Mohan S, Singh Y, Verma DK, Hasan SH. Synthesis of CuO nanoparticles through green route using Citrus limon juice and its application as nanosorbent for Cr(VI) remediation: process optimization with RSM and ANN-GA based model. Process Saf Environ Prot. 2015;96:156–66.

    Article  CAS  Google Scholar 

  323. Hao R, Li D, Zhang J. Insights into the removal of Cr(VI) from aqueous solution using plant-mediated biosynthesis of iron nanoparticles. Environ Technol Innov. 2021;23.

    Article  CAS  Google Scholar 

  324. Poguberović SS, Krčmar DM, Maletić SP, Kónya Z, Pilipović DDT, Kerkez DV, Rončević SD. Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng. 2016;90:42–9.

    Article  Google Scholar 

  325. Deng Z, Yi Z, Chen G, Ma X, Tang Y, Li X. Green tea polyphenol nanoparticle as a novel adsorbent to remove Pb2+ from wastewater. Mater Lett. 2021;284.

    Article  CAS  Google Scholar 

  326. Shahrashoub M, Bakhtiari S. The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater. 2021;311.

    Article  CAS  Google Scholar 

  327. Al-Qahtani KM. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. The Egyptian Journal of Aquatic Research. 2017;43(4):269–74.

    Article  Google Scholar 

  328. Azizi S, Mahdavi Shahri M, Mohamad R. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules. 2017;22(6):831.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Lingamdinne LP, Koduru JR, Rao Karri R. Green synthesis of iron oxide nanoparticles for lead removal from aqueous solutions. Key Eng Mater. 2019;805:122–7.

    Article  Google Scholar 

  330. Mahmoud AED, Al-Qahtani KM, Alflaij SO, Al-Qahtani SF, Alsamhan FA. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci Rep. 2021;11(1):12547.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  331. Leong K-Y, Loo S-L, Bashir MJ, Oh W-D, Rao PV, Lim J-W. Bioregeneration of spent activated carbon: review of key factors and recent mathematical models of kinetics. Chin J Chem Eng. 2018;26(5):893–902.

    Article  CAS  Google Scholar 

  332. Ehrampoush MH, Miria M, Salmani MH, Mahvi AH. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng. 2015;13(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  333. Sravanthi K, Ayodhya D, Swamy PY. Eco-friendly synthesis and characterization of phytogenic zero-valent iron nanoparticles for efficient removal of Cr(VI) from contaminated water. Emergent Materials. 2019;2(3):327–35.

    Article  CAS  Google Scholar 

  334. Afroosheh F, Bakhtiari S, Shahrashoub M, Ebrahimi M. Green synthesis of nanoscale zero-valent iron/activated carbon composites and their application for copper and chromium removal from aqueous solutions. J Nano Res. 2021;66:129–42.

    Article  CAS  Google Scholar 

  335. Adio SO, Omar MH, Asif M, Saleh TA. Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis. Process Saf Environ Prot. 2017;107:518–27.

    Article  CAS  Google Scholar 

  336. Sebastian A, Nangia A, Prasad M. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in Oryza sativa L. J Clean Prod. 2018;174:355–66.

    Article  CAS  Google Scholar 

  337. Hussain D, Khan SA, Alharthi SS, Khan TA. Insight into the performance of novel kaolinite-cellulose/cobalt oxide nanocomposite as green adsorbent for liquid phase abatement of heavy metal ions: modelling and mechanism. Arab J Chem. 2022;15(7).

    Article  CAS  Google Scholar 

  338. Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials. 2018;8(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  339. Kanthimathi G, Senthilkumar O, Sankar C, Prathibha B, Kumar SS. Green Synthesis of silver nanoparticles using Vitex negundo extracts and their application in the effluent treatment of cracker industries. In Journal of Physics: Conference Series. 2021. IOP Publishing.

  340. Andrade-Zavaleta K, Chacon-Laiza Y, Asmat-Campos D, Raquel-Checca N. Green synthesis of superparamagnetic iron oxide nanoparticles with Eucalyptus globulus extract and their application in the removal of heavy metals from agricultural soil. Molecules. 2022;27(4):1367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Sethy NK, Arif Z, Mishra PK, Kumar P. Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis. 2020;9(1):171–81.

    Article  Google Scholar 

  342. Mahanty S, Bakshi M, Ghosh S, Gaine T, Chatterjee S, Bhattacharyya S, Das S, Das P, Chaudhuri P. Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: synthesis, adsorption isotherm, kinetics and thermodynamics study. Environmental Nanotechnology, Monitoring & Management. 2019;12.

    Article  Google Scholar 

  343. Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R.Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol. 2015;27(5):1861–1869.

  344. Mahanty S, Chatterjee S, Ghosh S, Tudu P, Gaine T, Bakshi M, Das S, Das P, Bhattacharyya S, Bandyopadhyay S, Chaudhuri P. Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: biofabrication, adsorptive dynamics and chemometric modeling study. J Water Proc Eng. 2020;37:101426.

  345. El-Kassas HY, Aly-Eldeen MA, Gharib SM. Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin. 2016;35(8):89–98.

    Article  CAS  Google Scholar 

  346. Zhang Y, Zhu Z, Liao Y, Dang Z, Guo C. Effects of Fe(II) source on the formation and reduction rate of biosynthetic mackinawite: biosynthesis process and removal of Cr(VI). Chem Eng J. 2021;421.

    Article  CAS  Google Scholar 

  347. Sayadi MH, Salmani N, Heidari A, Rezaei MR. Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surfaces and Interfaces. 2018;10:136–43.

    Article  CAS  Google Scholar 

  348. Yazdani A, Sayadi M, Heidari A. Green biosynthesis of palladium oxide nanoparticles using dictyota indica seaweed and its application for adsorption. Journal of Water and Environmental Nanotechnology. 2018;3(4):337–47.

    Google Scholar 

  349. Wang W, Zhang B, Liu Q, Du P, Liu W, He Z. Biosynthesis of palladium nanoparticles using Shewanella loihica PV-4 for excellent catalytic reduction of chromium(vi). Environ Sci Nano. 2018;5(3):730–9.

    Article  CAS  Google Scholar 

  350. Arsiya F, Sayadi M, Sobhani S. Arsenic (III) adsorption using palladium nanoparticles from aqueous solution. Journal of Water and Environmental Nanotechnology. 2017;2(3):166–73.

    CAS  Google Scholar 

  351. Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PNL. Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ Chem Lett. 2016;14(3):381–6.

    Article  CAS  Google Scholar 

  352. Ruan X, Li R, Ding Z, Luo J, Liu Q, Deng C, Li D. Removal of Pb(II) ions from aqueous solutions by spherical nanocomposites synthesized through immobilization of Paecilomyces lilacinus in silica nanoparticles coated with Ca-alginate. J Nanosci Nanotechnol. 2020;20(3):1907–16.

    Article  PubMed  CAS  Google Scholar 

  353. Raj R, Dalei K, Chakraborty J, Das S. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci. 2016;462:166–75.

    Article  ADS  PubMed  CAS  Google Scholar 

  354. Liao W, Wang H, Li F, Zhao C, Liu J, Liao J, Yang J, Yang Y, Liu N. MnO2-loaded microorganism-derived carbon for U(VI) adsorption from aqueous solution. Environ Sci Pollut Res. 2019;26(4):3697–705.

    Article  CAS  Google Scholar 

  355. Jain R, Jordan N, Schild D, Van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PN. Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J. 2015;260:855–63.

    Article  CAS  Google Scholar 

  356. Ni B-J, Huang Q-S, Wang C, Ni T-Y, Sun J, Wei W. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere. 2019;219:351–7.

    Article  ADS  PubMed  CAS  Google Scholar 

  357. Park J-H, Ok YS, Kim S-H, Cho J-S, Heo J-S, Delaune RD, Seo D-C. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere. 2016;142:77–83.

    Article  ADS  PubMed  CAS  Google Scholar 

  358. Dharmapriya TN, Li D, Chung Y-C, Huang P-J. Green synthesis of reusable adsorbents for the removal of heavy metal ions. ACS Omega. 2021;6(45):30478–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  359. Kampalanonwat P, Supaphol P. The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats. Energy Procedia. 2014;56:142–51.

    Article  CAS  Google Scholar 

  360. Wen J, Hu X. Metal selectivity and effects of co-existing ions on the removal of Cd, Cu, Ni, and Cr by ZIF-8-EGCG nanoparticles. J Colloid Interface Sci. 2021;589:578–86.

    Article  ADS  PubMed  CAS  Google Scholar 

  361. Weng X, Jin X, Lin J, Naidu R, Chen Z. Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles. Ecol Eng. 2016;97:32–9.

    Article  Google Scholar 

  362. Nejadshafiee V, Islami MR. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine. Environ Sci Pollut Res. 2020;27(2):1625–39.

    Article  CAS  Google Scholar 

  363. Fato TP, Li D-W, Zhao L-J, Qiu K, Long Y-T. Simultaneous removal of multiple heavy metal ions from river water using ultrafine mesoporous magnetite nanoparticles. ACS Omega. 2019;4(4):7543–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Badruddoza AZM, Shawon ZBZ, Tay WJD, Hidajat K, Uddin MS. Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohyd Polym. 2013;91(1):322–32.

    Article  CAS  Google Scholar 

  365. Li Y-H, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41(14):2787–92.

    Article  CAS  Google Scholar 

  366. Kyzas GZ, Deliyanni EA. Mercury(II) removal with modified magnetic chitosan adsorbents. Molecules. 2013;18(6):6193–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  367. Velempini T, Ahamed M, Pillay K.Heavy-metal spent adsorbents reuse in catalytic, energy and forensic applications-a new approach in reducing secondary pollution associated with adsorption. Results Chem. 2023;100901.

  368. •• Silva L, Reis I, Bonatto C. Green synthesis of metal nanoparticles by plants: current trends and challenges. Green Proc Nanotechnol From Inorgan Bioinspired Nanomater. 2015;259–275.

Download references

Author information

Authors and Affiliations

Authors

Contributions

CRediT authorship contribution statement Somayeh Bakhtiari: Conceptualization, Supervision, Investigation, writing – original draft, Writing – review &editing. Marjan Salari: Conceptualization, Supervision, Investigation, writing – original draft, Writing – review &editing. Meysam Shahrashoub: Writing – original draft, Investigation, Writing – review & editing. Asma Zeidabadi: Writing – original draft, Investigation. Gaurav Sharma: Writing – review & editing. Mika Sillanpää: Writing – review & editing. All authors reviewed the manuscript."

Corresponding author

Correspondence to Marjan Salari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtiari, S., Salari, M., Shahrashoub, M. et al. A Comprehensive Review on Green and Eco-Friendly Nano-Adsorbents for the Removal of Heavy Metal Ions: Synthesis, Adsorption Mechanisms, and Applications. Curr Pollution Rep 10, 1–39 (2024). https://doi.org/10.1007/s40726-023-00290-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-023-00290-7

Keywords

Navigation